PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dual-band absorption of a GaAs thin-film solar cell using a bilayer nano-antenna structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a dual-band plasmonic solar cell. The proposed unit structure gathers two layers, each layer consists of a silver nanoparticle deposited on a GaAs substrate and covered with an ITO layer, It reveals two discrete absorption bands in the infra-red part of the solar spectrum. Nanoparticle structures have been used for light-trapping to increase the absorption of plasmonic solar cells. By proper engineering of these structures, resonance frequencies and absorption coefficients can be controlled as it will be elucidated. The simulation results are achieved using CST Microwave Studio through the finite element method. The results indicate that this proposed dual-band plasmonic solar cell exhibits an absorption bandwidth, defined as the full width at half maximum, reaches 71 nm. Moreover, It can be noticed that by controlling the nanoparticle height above the GaAs substrate, the absorption peak can be increased to reach 0.77.
Twórcy
  • Dept. of Electronics & Communications Engineering, Faculty of Engineering, Minia University, Minia 61111, Egypt
autor
  • Department of Electronics & Communications Engineering, Higher Technological Institute, 10th of Ramadan City, Egypt
Bibliografia
  • [1] Fei Guo, C., Sun, T., Cao, F., Liu, Q. & Ren, Z. Metallic nanostructures for light trapping in energy-harvesting devices. Light-Sci. Appl. 3 (4), e161 (2014).
  • [2] Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9 (3), 205–213 (2010).
  • [3] Taghian, F., Ahmadi, V. & Yousefi, L. Enhanced thin solar cells using optical nano-antenna induced hybrid plasmonic travelling-wave. J. Lightwave Technol. 34 (4), 1267–1273 (2016).
  • [4] Yuan, Y.-Y. et al. Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays. Chinese Phys. B 24, 74206 (2015).
  • [5] Novitsky, A. et al. Photon absorption and photocurrent in solar cells below semiconductor bandgap due to electron photoemission from plasmonic nanoantennas. Prog. Photovoltaics Res. Appl. 22, 422–426 (2014).
  • [6] Aboul-Dahab, M., Dawoud, M., Zainud-Deen, S.H. & Malhat, H.A. Tapered Metal Nanoantenna Structures for Absorption Enhancement in GaAs Thin-Film Solar Cells in The 2nd International Conference on Advanced Technology and Applied Science (ICaTAS 2017), 139–145, (2017).
  • [7] Medhat, M., El-Batawy, Y. M., Abdelmageed, A. K. & Soliman, E. A. Gear nano antenna for plasmonie photovoltaic. in 2016 IEEE Middle East Conference on Antennas and Propagation (MECAP) 1–4 (2016). doi:10.1109/MECAP.2016.7790111.
  • [8] Pala, R. A., White, J., Barnard, E., Liu, J. & Brongersma, M. L. Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements. Adv. Mater. 21, 3504–3509 (2009).
  • [9] Derkacs, D., Lim, S. H., Matheu, P., Mar, W. & Yu, E. T. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 89, 93103 (2006).
  • [10] Yuan, Z., Li, X. & Jing H. Absorption enhancement of thin-film solar cell with rectangular Ag Nanoparticles. J. Appl. Sci. 14 (8), 823–827 (2014).
  • [11] Petryayeva, E. & Krull, U. J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review. Anal. Chim. Acta 706, 8–24 (2011).
  • [12] Spinelli, P. & Polman, A. Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles. Opt. Express 20 (105), A641–A654 (2012).
  • [13] Simovski, C. et al. Enhanced efficiency of light-trapping nanoantenna arrays for thin-film solar cells. Opt. Express 21 (104), A714–A725 (2013).
  • [14] Nagel, J. R. & Scarpulla, M. A. Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles. Opt. Express 18 (102), A139–A146 (2010).
  • [15] Nagel, J. R. & Scarpulla, M. A. Enhanced light absorption in thin film solar cells with embedded dielectric nanoparticles: induced texture dominates Mie scattering. Appl. Phys. Lett. 102 (15), 151111 (2013).
  • [16] Li, B., Lin, J., Lu, J., Su, X. & Li, J. Light absorption enhancement in thin-film solar cells by embedded lossless silica nanoparticles. J. Opt. 15 (5), 05500 (2013).
  • [17] Bauer, C., & Giessen, H. Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures. Opt. Express 21, (103), A363–A371 (2013).
  • [18] Yue, Liyang, Bing Yan, Matthew Attridge, & Zengbo Wang. Light absorption in perovskite solar cell: Fundamentals and plasmonic enhancement of infrared band absorption. Solar Energy 124, 143–152 (2016).
  • [19] Ferry, V. E. et al. Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors. Appl. Phys. Lett. 95 (18), 183503 (2009).
  • [20] Pillai, S., Catchpole, K. R., Trupke, T. & Green, M. A.. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101 (9), 093105 (2007).
  • [21] Ye, F., Burns, M. J. & Naughton, M. J. Embedded metal nanopatterns for near-field scattering-enhanced optical absorption. Phys. Status Solidi 209, 1829–1834 (2012).
  • [22] Omelyanovich, M., Ra’di, Y. & Simovski, C. Perfect plasmonic absorbers for photovoltaic applications. J. Opt. 17 (12), 125901 (2015).
  • [23] Elshorbagy, M. H., López-Fraguas, E., Sánchez-Pena, J.M., García-Cámara, B. & Vergaz, R. Boosting ultrathin aSi-H solar cells absorption through a nanoparticle cross-packed metasurface. Sol. Energy, 202, 10–16 (2020).
  • [24] Liang, C. et al. Dual-band infrared perfect absorber based on a Ag-dielectric-Ag multilayer films with nanoring grooves arrays. Plasmonics, 15 (1), 93–100 (2020).
  • [25] Patel, S. K. et al. Multi-layered graphene silica-based tunable absorber for infrared wavelength based on circuit theory approach. Plasmonics (2020) doi:10.1007/s11468-020-01191-x.
  • [26] Liang, C. et al. A broadband and polarization-independent metamaterial perfect absorber with monolayer Cr and Ti elliptical disks array. Results Phys. 15, 102635 (2019).
  • [27] Li, H., Niu, J. & Wang, G. Dual-band, polarization-insensitive metamaterial perfect absorber based on monolayer graphene in the mid-infrared range. Results Phys. 13, 102313 (2019).
  • [28] Zhang, M. & Song, Z. Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration. Opt. Express, 28 (8), 11780–11788 (2020).
  • [29] Varlamov, S., Rao, J. & Soderstrom, T. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping. J. Vis. Exp. 65, e4092 (2012).
  • [30] Morawiec, S., Mendes, M. J., Priolo, F. & Crupi, I. Plasmonic nanostructures for light trapping in thin-film solar cells. Mater. Sci. Semicond. Process, 92, 10–18 (2019).
  • [31] Thompson, C. V. Solid-state dewetting of thin films. Ann. Rev. Mater. Res. 42, 399–434 (2012).
  • [32] Pfeiffer, T. V. et al. Plasmonic nanoparticle films for solar cell applications fabricated by size-selective aerosol deposition. Energy Procedia 60, 3–12 (2014).
  • [33] Fernández-Arias M. et al. Synthesis and Deposition of Ag Nanoparticles by Combining Laser Ablation and lectrophoretic Deposition Techniques. Coatings 9, 571 (2019).
  • [34] Novotny, L., & Hecht, B. Principles of nano-optics. (Cambridge University Press, New York, USA, 2012).
  • [35] Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B, 6 (12), 4370–4379 (1972).
  • [36] Weiner, J. & Nunes, F. Light-matter interaction 2/E. (Oxford University Press, 2017).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a20110a2-c091-4ca4-b520-622174f01540
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.