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Abstract. In this paper, we study the existence and regularity results for nonlinear
singular parabolic problems with a natural growth gradient term





∂u
∂t − div((a(x, t) + uq)|∇u|p−2∇u) + d(x, t) |∇u|p

uγ = f in Q,

u(x, t) = 0 on Γ,
u(x, t = 0) = u0(x) in Ω,

where Ω is a bounded open subset of RN , N > 2, Q is the cylinder Ω × (0, T ), T > 0,
Γ the lateral surface ∂Ω × (0, T ), 2 ≤ p < N, a(x, t) and b(x, t) are positive measurable
bounded functions, q ≥ 0, 0 ≤ γ < 1, and f non-negative function belongs to the
Lebesgue space Lm(Q) with m > 1, and u0 ∈ L∞(Ω) such that

∀ω ⊂⊂ Ω ∃Dω > 0 : u0 ≥ Dω in ω.

More precisely, we study the interaction between the term uq (q > 0) and the singular
lower order term d(x, t)|∇u|pu−γ (0 < γ < 1) in order to get a solution to the above
problem. The regularizing effect of the term uq on the regularity of the solution and
its gradient is also analyzed.
Keywords: degenerate parabolic equations, singular parabolic equations, natural
growth term.
Mathematics Subject Classification: 35A25, 35B45, 35B09, 35D30, 35K65, 35K67.

1. INTRODUCTION

In this work, we restrict our attention to the study of a class of singular nonlinear
parabolic problems having natural growth with respect to the gradient. The problem
is the following





∂u
∂t − div((a(x, t) + uq)|∇u|p−2∇u) + d(x, t) |∇u|p

uγ = f in Q,

u(x, t) = 0 on Γ,
u(x, t = 0) = u0(x) in Ω,

(1.1)
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where Ω is a bounded open subset of RN , N > 2, and Q is the cylinder Ω × (0, T ),
T > 0, Γ the lateral surface ∂Ω × (0, T ), 2 ≤ p < N, q ≥ 0, 0 < γ < 1, a(x, t) and
d(x, t) are measurable functions satisfying

0 < α1 ≤ a(x, t) ≤ α2, (1.2)

0 < β1 ≤ d(x, t) ≤ β2, (1.3)
where α1, α2, β1 and β2 are fixed real numbers such that α1 < α2 and β1 < β2. On
the function f, we assume that it is non-negative and not identically zero, and that it
belongs to some Lebesgue space Lm(Q), m > 1. Moreover, the initial data u0 ∈ L∞(Ω)
satisfies the following condition of strict positivity

∃Dω > 0 ∀ω ⊂⊂ Ω : u0 ≥ Dω. (1.4)

The study of singular nonlinear parabolic problems of this kind is influenced by their
connection with the theory of non-Newtonian fluids and heat conduction in electrically
active materials (see, for instance, [29, 34] and references therein).

From a purely mathematical view, interest in studying this type of problem like (1.1)
naturally arises in the presence of the following two terms: The first term, a(x, t) + uq

appears in the coefficient of the p-Laplace operator. It has a very significant impact on
the boundary and growth conditions, where the operator becomes unbounded and has
a more general growth condition than the operator discussed in the papers [5, 13, 22].
The second term that appears in problem (1.1) is d(x, t) |∇u|p

uγ , γ > 0 having natural
growth depend on the gradient, which becomes singular where the solution is zero
since it depends on a negative power of the solution.

In the non-singular case (i.e. γ = 0), the problem(1.1) has been extensively studied
in the past under different assumptions on the data f ; see [11, 12, 20, 30, 43]. More
recently, Abdellaoui and Redwane in [1] studied the general non-singular case with
f ∈ M(Q) (the space of Radon measures on Q with total bounded variation), proving
the existence of a weak solution of (1.1).

In the elliptic case, when the singular term exists (i.e. γ > 0) the problem (1.1)
has been studied in the literature. If a(x, t) = 0, q = 0 and p = 2, the authors in [3]
have studied the existence and non-existence of the solution to the following problem

{
− div(M(x, u)∇u) + g(x, u)|∇u|2 = f in Ω,
u = 0 on ∂Ω,

where |M(x, s)| ≤ β, M(x, s)ξ.ξ ≥ α|ξ|2 for a.e. x ∈ Ω, for all (s, ξ) ∈ R × RN , and
α, β are real numbers such that 0 < α < β. g : Ω × (0,+∞) → R is a Carathéodory
function possibly singular at s = 0 satisfying g(x, s) ≥ 0 for a.e. x ∈ Ω, for all s > 0
and 0 < f ∈ L

2N
N+2 (Ω). This result has been extended in [44], see also [2]. When the

term uq exist (i.e. q > 0) and p = 2, Boccardo et al. in [7] proved that there exists
a non-negative solution to the following singular elliptic problem





−div((a(x) + uq)∇u) + b(x) |∇u|2

uγ = f in Ω,
u = 0 on ∂Ω,
u > 0 in Ω,
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where q > 0, 0 < γ < 1 and b(x) is a measurable bounded function and
0 < f ∈ Lm(Ω), m ≥ 1. For more and different aspects concerning singular elliptic
problems, we refer to [8, 9, 27, 32, 37–40, 42].

In the last few years, great attention has been paid to the study of singular parabolic
problems. Here, we limit ourselves to giving a very brief description of some papers
that mostly influenced us. The authors in [6] proved the existence of non-negative
solutions to the following singular parabolic problem





∂u
∂t − div(M(x, t)∇u) +B |∇u|2

uγ = ur in Q,
u(x, t) = 0 on Γ,
u(x, 0) = u0(x) in Ω,

where B > 0, 0 < γ < 1, 0 < r < 2 − γ and M is a bounded and measurable
uniformly elliptic matrix, u0 is a strictly positive function in L∞(Ω). In the same kind,
Martínez-Aparicio and Petitta in [33] studied the singular parabolic problem





∂u
∂t − div(M(x, t, u)∇u) + g(x, t, u)|∇u|2 = f(x, t) in Q,

u(x, t) = 0 on Γ,
u(x, 0) = u0(x) in Ω,

where f ∈ Lr(0, T ;Lq(Ω)), with 1
r + 2

Nq < 1, q ≥ 1, r > 1, and u0 ∈ L∞(Ω), and the
function g(x, t, s) : Q× (0,+∞) → R is a Carathéodory function that is singular at
s = 0, and possibly negative (see also [17]). If p ≥ 2 and q = 0, the authors in [13]
have proved the existence of weak solutions to homogeneous nonlinear and singular
parabolic problems





∂u
∂t − ∆pu+B |∇u|p

u = 0 in Q,

u(x, t) = 0 on Γ,
u(x, 0) = u0(x) in Ω,

with p > 1, B > 0, and u0 is a positive function in L∞(Ω) such that u0 ≥ c > 0
a.e. on Ω; see [5] concerning the non-homogeneous case. Finally, more recently, if
a(x, t) = 0 and q = 0, the problem (1.1) has been studied in [22]. For more different
aspects concerning singular parabolic problems, we refer to [14–16, 18, 21–25, 31, 35].

The difficulties in studying problem (1.1) arise from the presence of the term
uq (q > 0) and from the lower-order term: The natural growth term depends on the
gradient, and singularity depends on u, as well as the proof of the strict positivity of
the solution in the interior of the parabolic cylinder. To overcome these difficulties,
we must approximate the singular problem (1.1) by another non-singular one, and we
show that this problem admits a non-negative solution (the proof is based on the
application of Schauder’s fixed point theorem) and that this solution is strictly positive
in the interior of the parabolic cylinder (the proof is based on the use of the intrinsic
Harnack inequality).
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Let us introduce some notation. We will use meas(E) and |E| to denote the
Lebesgue measure of a subset E of RN . The Hölder conjugate exponent of q > 1
is q′ = q/(q − 1), while the Sobolev conjugate exponent of p for 1 ≤ p < N is
p∗ = Np/(N − p). For a fixed k > 0, we define the truncation functions Tk and Gk

as follows:

Tk(s) = max(−k,min(s, k)),
Gk(s) = s− Tk(s) = (|s| − k)+sign(s).

To simplify notation, we will use
∫

Q
f to denote

∫
Q
f(x, t) dx dt, when there is no

ambiguity in the integration variables. We use C to denote constants whose values may
change from line to line and even within the same line, depending on the parameters,
such as N , p, B, θ, m, T , Ω, or Q, but not on the indexes of the sequences we introduce.

Next, we state a lemma we will use, which is the Gagliardo–Nirenberg inequality.

Lemma 1.1 ([19, Theorem 2.1]). Let v be a function in W 1,h
0 (Ω) ∩Lρ(Ω), with h ≥ 1,

ρ ≥ 1. Then there exists a positive constant C, depending on N , h, ρ and σ such that

∥v∥Lσ(Ω) ≤ C∥∇v∥η
(Lh(Ω))N ∥v∥1−η

Lρ(Ω),

for every η and σ satisfying

0 < η < 1, 1
σ

= η

(
1
h

− 1
N

)
+ 1 − η

ρ
.

An immediate consequence of the previous lemma is the following embedding
result: ∫

Q

|v|σdxdt ≤ C∥v∥
ρh
N

L∞(0,T ;Lρ(Ω))

∫

Q

|∇v|hdxdt,

which holds for every function v ∈ Lh(0, T ;W 1,h
0 (Ω)) ∩ L∞(0, T ;Lρ(Ω)) with h ≥ 1,

ρ ≥ 1 and σ = h(N+ρ)
N (see, for instance, [19, Proposition 3.1]).

Now we give the definition of a weak solution to the problem (1.1).

Definition 1.2. A weak solution to problem (1.1) is a function u in L1(0, T ;W 1,1
0 (Ω))

such that for every w ⊂⊂ Ω there exists cw such that u ≥ cw > 0 in w × (0, T ),
(a(x, t) + uq)|∇u|p−1 ∈ L1(Q), |∇u|p

uγ ∈ L1(0, T ;L1
loc(Ω)). Furthermore, we have that

−
∫

Q

u
∂ϕ

∂t
dx dt+

∫

Q

(a(x, t) + uq)|∇u|p−2∇u · ∇ϕdx dt

+
∫

Q

d(x, t) |∇u|p
uγ

ϕdx dt =
∫

Q

fϕ dx dt+
∫

Ω

u0(x)ϕ(x, 0),
(1.5)

for every ϕ ∈ C1
c (Ω × [0, T )).
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Here, we give the main results of this paper.

Theorem 1.3. Let 0 < γ < 1, 0 < q < 1 and δ = min(γ, 1 − q). Assume that
a satisfy (1.2), d satisfy (1.3) and f is a non-negative function belonging to Lm(Q)
with 1 < m < N/p+ 1. Then there exists a solution u of the problem (1.1) in the sense
of Definition 1.2 verify the following regularity:

(i) If p(N+1+δ)
p(N+1+δ)−Nδ ≤ m < N/p + 1, then u belongs to Lp(0, T ;W 1,p

0 (Ω)) ∩ Lσ(Q),
with σ = mN(p−δ)+p

N−pm+p .
(ii) If 1 < m < p(N+1+δ)

p(N+1+δ)−Nδ , then u belongs to Ls(0, T ;W 1,s
0 (Ω)) ∩ Lσ(Q), where

s = m
N(p− δ) + p

N + 1 − δ(m− 1) and σ = m
N(p− δ) + p

N − pm+ p
.

Moreover, we have the following summability:

uq|∇u|p−1 ∈ Lρ(Q), with 1 ≤ ρ <
s

p− 1 .

Remark 1.4. Observe that by the fact that m > 1, we have s > p − 1, then the
interval [1, s

p−1 ) is not empty.

Theorem 1.5. Let 0 < γ < 1, q ≥ 1 and δ = min(γ, 1−q). Assume that a satisfy (1.2),
d satisfy (1.3) and f is non-negative function belongs to Lm(Q) with 1 < m < N/p+1.
Then there exists a solution u of the problem (1.1) in the sense of Definition 1.2 satisfy
the following regularity: u ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ Lσ(Q), with

σ = m
N(p− δ) + p

N − pm+ p
.

Moreover, we have the following summability:

uq|∇u|p−1 ∈ Lρ(Q), with 1 ≤ ρ ≤ p′.

Theorem 1.6. Let 0 < γ < 1, max
(

0, N+p−p(N−γ)
N

)
≤ q ≤ p+γ

p−1 and f be
a non-negative function belongs to Lm(Q), with m = N/p + 1. Assume that (1.2)
and (1.3) hold true. Then there exists a solution u of the problem (1.1) in the sense of
Definition 1.2 verify the following regularity:

u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ Lq+γ+p(0, T ;L

N(q+γ+p)
N−p (Ω)).

Moreover,

uq|∇u|p−1 ∈ Lρ(Q), with ρ = p(p+ γ + q)
qp+ (p− 1)(p+ γ + q) .
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Remark 1.7.
(i) The condition q ≤ p+γ

p−1 is due to the fact ρ ≥ 1, and

max
(

0, N + p− p(N − γ)
N

)
≤ q

is due to the fact of the regularity of u in the space Lq+γ+p(0, T ;L
N(q+γ+p)

N−p (Ω))
and the choice of q ≥ 0 in problem (1.1).

(ii) By the fact N+p−p(N−γ)
N < p+γ

p−1 , then the interval
[
max

(
0, N+p−p(N−γ)

N

)
, p+γ

p−1

]

is not empty.
Theorem 1.8. Let 0 < γ < 1, q > 0 and f be a non-negative function belongs to
Lm(Q), with m > N/p+ 1. Assume that (1.2) and (1.3) hold true. Then there exists
a solution u of the problem (1.1) in the sense of Definition 1.2 verify the following
regularity: u ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(Q). Moreover,

uq|∇u|p−1 ∈ Lp′
(Q).

Remark 1.9. The above results extended the results contained in the paper [7] in the
evolution case and improved the results contained in the paper [22].

2. APPROXIMATION OF (1.1), POSITIVITY AND A PRIORI ESTIMATES

Let 0 < ε < 1. We approximate the problem (1.1) by the following nonlinear and
non-singular problems




∂uε

∂t − div((a(x, t) + |uε|q)|∇uε|p−2∇uε) + d(x, t) uε|∇uε|p

(|uε|+ε)γ+1 = fε in Q,

uε(x, t) = 0 on Γ,
uε(x, 0) = uε0(x) in Ω,

(2.1)

where fε = f
1+εf and fε ∈ L∞(Q), such that

∥fε∥Lm(Q) ≤ ∥f∥Lm(Q) and fε → f strongly in Lm(Q), m > 1, (2.2)

and uε0(x) = u0(x)
1+εu0(x) ∈ L∞(Ω) such that

∥uε0(x)∥L∞(Ω) ≤ ∥u0∥L∞(Ω) and uε0(x) → u0(x) strongly in L1(Ω). (2.3)

The problem (2.1) admits weak solutions uε that belong to Lp(0, T ;W 1,p
0 (Ω)) ∩

L∞(Q), see [10, 13, 28, 36]. Also, the solution of problem (2.1) is to continue in time,
that is, uε ∈ C([0, T ];L1

loc(Ω)), as can be easily proved using a method similar to
Theorem 1.1 of [36]. Because the right-hand side of (2.1) is non-negative, uε is also
non-negative.

In the next lemma, we will prove the strict positivity of uε in ω × (0, T ), for every
ω ⊂⊂ Ω.
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Lemma 2.1. Let uε be a solution to (2.1). Then for every ω ⊂⊂ Ω, there exists
a positive constant cω such that

uε ≥ cw > 0, in ω × (0, T ), for all ε ∈ (0, 1).
Proof. Let us define the functions

Hε(s) = (s+ ε)1−γ

1 − γ
, H0(s) = s1−γ

1 − γ
,

for s ≥ 0, and take φ(uε) = e− β2
α1

Hε(uε)ϕ, with ϕ in Lp(0, T ;W 1,p
0 (Ω)) ∩L∞(Q), ϕ ≥ 0

as a test function in (2.1). We obtain
T∫

0

∫

Ω

∂uε

∂t
e

−β2
α1

Hε(uε)ϕ

+
∫

Q

[a(x, t) + uq
ε]|∇uε|p−2∇uε · ∇ϕ e

−β2
α1

Hε(uε)

− β2
α1

∫

Q

[a(x, t) + uq
ε] |∇uε|p

(uε + ε)γ
e

−β2
α1

Hε(uε)ϕ

+
∫

Q

d(x, t) uε|∇uε|p
(uε + ε)θ+1 e

−β2
α1

Hε(uε)ϕ =
∫

Q

fεe
−β2
α1

Hε(uε)ϕ.

Recalling the conditions (1.2) and (1.3), we can write
T∫

0

∫

Ω

∂uε

∂t
e

−β2
α1

Hε(uε)ϕ

+
∫

Q

[a(x, t) + uq
ε]|∇uε|p−2∇uε · ∇ϕ e

−β2
α1

Hε(uε)

− β2
α1

∫

Q

α1
|∇uε|p

(uε + ε)γ
e

−β2
α1

Hε(uε)ϕ

+
∫

Q

β2
|∇uε|p

(uε + ε)γ
e

−β2
α1

Hε(uε)ϕ ≥
∫

Q

fεe
−β2
α1

Hε(uε)ϕ.

Therefore, we obtain
T∫

0

∫

Ω

∂uε

∂t
e

−β2
α1

Hε(uε)ϕ

+
∫

Q

[a(x, t) + uq
ε]|∇uε|p−2∇uε · ∇ϕe

−β2
α1

Hε(uε) ≥
∫

Q

fεe
−β2
α1

Hε(uε)ϕ,

(2.4)

for all ϕ ∈ Lp(0, T : W 1,p
0 (Ω)) ∩ L∞(Q), ϕ ≥ 0.
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Now, given δ > 0, define the function

ψδ(s) =





1 if 0 ≤ s < 1,
−1
δ (s− 1 − δ) if 1 ≤ s < δ + 1,

0 if s ≥ δ + 1,

and fix a function v in Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q) with v ≥ 0.

Taking ϕ = ψδ(uε)v in (2.4) we have

T∫

0

∫

Ω

∂uε

∂t
ψδ(uε)e

−β2
α1

Hε(uε)v

+
∫

Q

[a(x, t) + uq
ε]ψδ(uε)e

−β2
α1

Hε(uε)|∇uε|p−2∇uε · ∇v

≥
∫

Q

fεe
−β2
α1

Hε(uε)ψδ(uε)v + 1
δ

∫

{1≤uε≤δ+1}

[a(x, t) + uq
ε]|∇uε|pe

−β2
α1

Hε(uε)v.

Then, dropping the positive term, we get

T∫

0

∫

Ω

∂uε

∂t
ψδ(uε)e

−β2
α1

Hε(uε)v

+
∫

Q

[a(x, t) + uq
ε]ψδ(uε)e

−β2
α1

Hε(uε)|∇uε|p−2∇uε · ∇v

≥
∫

Q

fεe
−β2
α1

Hε(uε)ψδ(uε)v.

Then, passing to the limit as δ tends to zero, we obtain

T∫

0

∫

Ω

∂uε

∂t
e

−β2
α1

Hε(uε)vχ{0≤uε<1}

+
∫

Q

[a(x, t) + uq
ε]e

−β2
α1

Hε(uε)|∇uε|p−2∇uε · ∇vχ{0≤uε<1}

≥
∫

Q

fεe
−β2
α1

Hε(uε)vχ{0≤uε<1}.
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As a result, we can formulate the inequality above as follows:

T∫

0

∫

Ω

∂T1(uε)
∂t

e
−β2
α1

Hε(T1(uε))v

+
∫

Q

[a(x, t) + T1(uε)q]e
−β2
α1

Hε(T1(uε))|∇T1(uε)|p−2∇T1(uε) · ∇v

≥
∫

Q

fεe
−β2
α1

Hε(uε)vχ{0≤uε<1}.

From (1.2) we have α1 ≤ a(x, t) + T1(uε)q ≤ α2 + 1, then the last inequality becomes

T∫

0

∫

Ω

∂T1(uε)
∂t

e
−β2
α1

Hε(T1(uε))v

+ (α2 + 1)
∫

Q

e
−β2
α1

Hε(T1(uε))|∇T1(uε)|p−2∇T1(uε) · ∇v

≥
∫

Q

fεe
−β2
α1

Hε(uε)vχ{0≤uε<1}.

Since fεe
−β2
α1

Hε(uε)χ{0≤uε<1} is not identically zero for every 0 < ε < 1, therefore
we obtain

T∫

0

∫

Ω

∂T1(uε)
∂t

e
−β2
α1

Hε(T1(uε))v

+ (α2 + 1)
∫

Q

e
−β2
α1

Hε(T1(uε))|∇T1(uε)|p−2∇T1(uε) · ∇v ≥ 0.

If we define

wε(x, t) =
T1(uε)∫

0

e− β2
α1

Hε(ℓ) dℓ, (2.5)

then the above inequality becomes

T∫

0

∫

Ω

∂wε

∂t
v + (α2 + 1)

∫

Q

e
β2
α1

(p−2)Hε(T1(uε))|∇wε|p−2∇wε · ∇v ≥ 0.

By the fact that
e

β2(p−2)21−γ

α1(1−γ) ≥ e
β2
α1

(p−2)Hε(T1(uε)),
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it follows that
T∫

0

∫

Ω

∂wε

∂t
v +M

∫

Q

|∇wε|p−2∇wε · ∇v ≥ 0, (2.6)

where M = (α2 + 1)e
β2(p−2)21−γ

α1(1−γ) > 0, for every v ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q), with

v ≥ 0. This yields that wε is a weak solution to the variational inequality




1
M

∂wε

∂t − ∆pwε ≥ 0 in Q,
wε(x, t) = 0 on Γ,
wε(x, 0) =

∫ T1(u0)
0 e− β2

α1
Hε(ℓ) dℓ in Ω.

We are going to prove that

∀ω ⊂⊂ Ω ∃ cω > 0 : wε(x, t) ≥ cω inω × (0, T ),∀ ε ∈ (0, 1). (2.7)

Let vε be the solution of the following problem




1
M

∂vε

∂t − ∆pvε = 0 in Q,

vε(x, t) = 0 on Γ,
vε(x, 0) = wε(x, 0) in Ω.

(2.8)

From (2.6), wε is a super-solution of (2.8), we have wε ≥ vε, so that we only need to
prove that

∀ω ⊂⊂ Ω ∃ cω > 0 : vε(x, t) ≥ cω in ω × (0, T ),∀ ε ∈ (0, 1). (2.9)

Observe that, by definition of wε (in (2.5)), we have

vε(x, 0) = wε(x, 0) =
T1(u0)∫

0

e− β2
α1

Hε(ℓ) dℓ ≥ e− β2
α1

Hε(1)T1(u0) > 0,

so that, by (1.4),

∀ω ⊂⊂ Ω ∃D′
ω > 0 : vε(x, 0) ≥ D′

ω in ω × (0, T ),∀ ε ∈ (0, 1). (2.10)

For the rest of the proof we can argue as De Bonis and De Cave in [16, pp. 957–962],
(also see [25]). We deduce that there exists cω > 0 such that vε ≥ cω in ω × (0, T ) for
all ω ⊂⊂ Ω. Since wε ≥ vε, then wε ≥ cω in ω × (0, T ) for all ω ⊂⊂ Ω.

As uε ≥ T1(uε) ≥ wε, then we obtain

uε ≥ cω inω × (0, T ),∀ω ⊂⊂ Ω,∀ ε ∈ (0, 1).

We will now show some a priori estimates of the uε solution to the approximation
problem (2.1). The following lemma gives control over the natural growth term.
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Lemma 2.2. Let uε be solutions to problem (2.1). Then
∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1 ≤ |Q|1− 1

m ∥f∥Lm(Q) + ∥u0∥L1(Ω). (2.11)

Proof. For any fixed h > 0, let us consider Th(uε)
h as a test function in the approximation

problem (2.1). Then, it results
T∫

0

∫

Ω

∂uε

∂t

Th(uε)
h

+ 1
h

∫

Q

(a(x, t) + uq
ε)|∇uε|p−2∇uε∇Th(uε)

+
∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1

Th(uε)
h

=
∫

Q

fε
Th(uε)
h

.

Recalling (1.2), we obtain
∫

Ω

Sh(uε(x, T )) + 1
h

∫

{uε≤h}

(α1 + uq
ε)|∇Th(uε)|p

+
∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1

Th(uε)
h

≤
∫

Q

fε
Th(uε)
h

+ 1
h

∫

Ω

Sh(u0),

where Sh(y) =
∫ y

0 Th(ℓ) dℓ. Observe that Sh(y) ≥ Th(y)2

2 and Sh(y) ≤ yh for every
y ≥ 0. We may now remove the first and second non-negative terms from the previous
inequality, yielding

∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1

Th(uε)
h

≤
∫

Q

fε
Th(uε)
h

+
∫

Ω

u0.

Since u0 ∈ L∞(Ω), recalling that fε ≤ f, Th(uε)
h ≤ 1 and by Hölder’s inequality, we find

that ∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1

Th(uε)
h

≤ |Q|1− 1
m ∥f∥Lm(Q) + ∥u0∥L1(Ω).

Letting h tend to 0, by Fatou’s Lemma, we conclude that (2.11) holds.

Remark 2.3. According to Lemma 2.2, and since
∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1 ≥ 0, f ∈ L1(Q),

one has that∫

Q

∣∣∣∣d(x, t) uε|∇uε|p
(uε + ε)γ+1 − f

∣∣∣∣ ≤
∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1 +

∫

Q

f

≤ 2|Q|1− 1
m ∥f∥Lm(Q) + ∥u0∥L1(Ω) < C,
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where C is independent of ε. Therefore,

d(x, t) uε|∇uε|p
(uε + ε)γ+1 − f ∈ L1(Q).

In the sequel, we will need the following lemma:

Lemma 2.4. Let δ = min(γ, 1 − q), and let λ > 0. Then there exists C0 > 0 such that

λ(s+ ε)δ−1(α1 + sq) + β1s(s+ ε)λ−1−γ ≥ C0(s+ ε)λ−δ, (2.12)

for every s ≥ 0.

Proof. Multiplying (2.12) by (s+ ε)δ−λ, we have to prove that

λ(s+ ε)δ−1(α1 + sq) + β1s(s+ ε)δ−1−γ ≥ C0 > 0.

If δ = γ, we have to prove

λ
α1 + sq

(s+ ε)1−γ
+ β1

s

s+ ε
≥ C0 > 0.

Clearly, if s ≥ ε, we have s
s+ε ≥ 1

2 , while s < ε we find that

α1 + sq

(s+ ε)1−γ
≥ α1

(2ε)1−γ
≥ α1

21−γ
,

since ε < 1. Therefore, the claim is proved. If, instead, δ = 1 − q, we have to prove that

λ
α1 + sq

(s+ ε)q
+ β1

s

(s+ ε)q+γ
≥ C0 > 0,

which is true since the first term is greater than λ
2q if s ≥ ε and is greater than λα1

2q

if s < ε.

Lemma 2.5. Let the assumptions of Theorem 1.3 be in force. Then the solution uε

of (2.1) satisfy the following estimate:

(i) If p(N+1+δ)
p(N+1+δ)−Nδ ≤ m < N/p + 1, then uε is uniformly bounded in the space

Lp(0, T ;W 1,p
0 (Ω)) ∩ Lσ(Q).

(ii) If 1 < m < p(N+1+δ)
p(N+1+δ)−Nδ , then uε is uniformly bounded in the space

Ls(0, T ;W 1,s
0 (Ω)) ∩ Lσ(Q),

where s and σ are defined in Theorem 1.3. Moreover, the sequence uq
ε|∇uε|p−1 is

bounded in Lρ(Q), with 1 ≤ ρ < s
p−1 .
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Proof. Let uε be a solution of (2.1). We choose φ(uε) = (uε + ε)λ − ελ (with λ > 0)
as a test function in (2.1), we obtain, using the conditions (1.2) and (1.3),

∫

Ω

Ψ(uε(x, T )) + λ

t∫

0

∫

Ω

(α1 + uq
ε)(uε + ε)λ−1|∇uε|p

+ β1

t∫

0

∫

Ω

uε(uε + ε)λ|∇uε|p
(uε + ε)γ+1

≤
t∫

0

∫

Ω

fε(uε + ε)λ + ελ

t∫

0

∫

Ω

d(x, t) uε|∇uε|p
(uε + ε)γ+1 +

∫

Ω

Ψ(u0),

where Ψ(s) =
∫ s

0 φ(ℓ) dℓ. Since u0 ∈ L∞(Ω) and recalling (2.11), we have

∫

Ω

Ψ(uε(x, T )) + λ

t∫

0

∫

Ω

(α1 + uq
ε)(uε + ε)λ−1|∇uε|p

+ β1

t∫

0

∫

Ω

uε(uε + ε)λ|∇uε|p
(uε + ε)γ+1

≤
t∫

0

∫

Ω

fε(uε + ε)λ + ελ



∫

Q

f + ∥u0∥L1(Ω)


+ C.

Therefore, the last inequality becomes
∫

Ω

Ψ(uε(x, T )) +
∫

Q

[λ(α1 + uq
ε)(uε + ε)λ−1 + β1uε(uε + ε)λ−1−γ ]|∇uε|p

≤
t∫

0

∫

Ω

fε(uε + ε)λ + ελ



∫

Q

f + ∥u0∥L1(Ω)


+ C.

Recalling (2.12) and by the fact that δ = min(γ, 1 − q), we have

∫

Ω

Ψ(uε(x, T )) + C0

t∫

0

∫

Ω

(uε + ε)λ−δ|∇uε|p ≤
t∫

0

∫

Ω

fε(uε + ε)λ + C. (2.13)

By definitions of Ψ(s) and φ(s), whenever λ > 1 we can get

Ψ(s) ≥ sλ+1

λ+ 1 , ∀ s ∈ R+. (2.14)
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Using (2.14) in (2.13), we can write

1
λ+ 1

∫

Ω

uε(x, t)λ+1 + C0

t∫

0

∫

Ω

(uε + ε)λ−δ|∇uε|p

≤
t∫

0

∫

Ω

fε(uε + ε)λ + C.

(2.15)

Since λ > 1 > δ, then we can write

t∫

0

∫

Ω

(uε + ε)λ−δ|∇uε|p = pp

(λ− δ + p)p

t∫

0

∫

Ω

|∇[(uε + ε)
λ−δ+p

p − ε
λ−δ+p

p ]|p,

and

1
λ+ 1

∫

Ω

uε(x, t)λ+1 = 1
λ+ 1

∫

Ω

[u
λ−δ+p

p
ε ]

p(λ+1)
λ−δ+p .

From the two last equalities, the inequality (2.15) becomes

1
λ+ 1

∫

Ω

[u
λ−δ+p

p
ε ]

p(λ+1)
λ−δ+p + C0p

p

(λ− δ + p)p

t∫

0

∫

Ω

|∇[(uε + ε)
λ−δ+p

p − ε
λ−δ+p

p ]|p

≤
t∫

0

∫

Ω

fε(uε + ε)λ + C.

Applying Hölder’s inequality with indices (m, m′), we have

1
λ+ 1

∫

Ω

[u
λ−δ+p

p
ε ]

p(λ+1)
λ−δ+p + C0p

p

(λ− δ + p)p

t∫

0

∫

Ω

|∇[(uε + ε)
λ−δ+p

p − ε
λ−δ+p

p ]|p

≤ ∥f∥Lm(Q)




t∫

0

∫

Ω

(uε + ε)λm′




1
m′

+ C.

(2.16)



Degenerate singular parabolic problems with natural growth 485

Now, applying Lemma 1.1 (here v = u
λ−δ+p

p
ε , ρ = p(λ+1)

λ−δ+p , h = p ) and from (2.16),
we have

∫

Q

[u
λ−δ+p

p
ε ]p

N+ p(λ+1)
λ−δ+p
N ≤ C

(
∥u

λ−δ+p
p

ε ∥
p(λ+1)
λ−δ+p

L∞(0,T ;L
p(λ+1)
λ−δ+p (Ω))

) p
N ∫

Q

|∇u
λ−δ+p

p
ε |p

≤ C



∫

Q

(uε + ε)λm′




1
m′ ( p

N +1)

+ C

≤ C



∫

Q

uλm′
ε




1
m′ ( p

N +1)

+ Cε + C.

By a simple simplification, the last inequality becomes

∫

Q

u
N(λ−δ+p)+p(λ+1)

N
ε ≤ C



∫

Q

uλm′
ε




1
m′ ( p

N +1)

+ C. (2.17)

Let now choosing λ such that

N(λ− δ + p) + p(λ+ 1)
N

= λm′, (2.18)

this equivalent to λ = (m− 1) N(p−δ)+p
N−pm+p and λm′ = mN(p−δ)+p

N−pm+p = σ, since m > 1, then
λ > 0. Combining (2.17) with (2.18), we get

∫

Q

uσ
ε ≤ C



∫

Q

uσ
ε




1
m′ ( p

N +1)

+ C.

Since m < N/p+ 1, then 1
m′ (N/p+ 1) and applying Young’s inequality with indices(

Nm′

N+p ,
Nm′

Nm′−(N+p)

)
, it result that

∫

Q

uσ
ε ≤ C. (2.19)

Going back to (2.15), we obtain that by eliminating the non-negative term and using
Hölder’s inequality

C0

∫

Q

(uε + ε)λ−δ|∇uε|p ≤ ∥f∥Lm(Q)



∫

Q

uλm′
ε




1
m′

+ Cε + C.
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Using (2.18) and (2.19) in the later inequality, we obtain

C0

∫

Q

(uε + ε)λ−δ|∇uε|p ≤ ∥f∥Lm(Q)



∫

Q

uσ
ε




1
m′

+ C ≤ C. (2.20)

Now we turn to gradient estimates. If q < 1 and λ ≥ δ, that is, if m ≥ p(N+1+δ)
p(N+1+δ)−Nδ ,

from (2.20) we obtain ∫

Q

|∇uε|p ≤ C,

which gives the boundedness of uε in Lp(0, T ;W 1,p
0 (Ω)). Therefore, the proof of item (i)

is achieved.
If instead 1 < m < p(N+1+δ)

p(N+1+δ)−Nδ , i.e. if λ < δ, we also have by the definitions of
Ψ(s) and φ(s) that

Ψ(s) ≥ Cλs
λ+1 − C̃λ, ∀s ∈ R+. (2.21)

Going back to (2.13) and from (2.21), we get

Cλ

∫

Ω

uε(x, t)λ+1 + C0

t∫

0

∫

Ω

|∇uε|p
(uε + ε)δ−λ

≤
∫

Q

f(uε + ε)λ + C̃λmeas(Ω) + C.

Applying Hölder’s inequality with indices (m,m′) to the right of the previous inequality
allows us to obtain

Cλ

∫

Ω

uε(x, t)λ+1 + C0

t∫

0

∫

Ω

|∇uε|p
(uε + ε)δ−λ

≤ C



∫

Q

(uε + ε)λm′




1
m′

+ C.

Passing to the supremum in time for t ∈ (0, T ), we have

Cλ∥uε∥λ+1
L∞(0,T ;Lλ+1(Ω)) + C0

∫

Q

|∇uε|p
(uε + ε)δ−λ

≤ C



∫

Q

(uε + ε)λm′




1
m′

+ C.

(2.22)
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Let 1 < s < p. Using Hölder’s inequality with indices
(

p
s ,

p
p−s

)
, we may deduce that

∫

Q

|∇uε|s =
∫

Q

|∇uε|s

(uε + ε)
(δ−λ)s

p

(uε + ε)
(δ−λ)s

p

≤



∫

Q

|∇uε|p
(uε + ε)δ−λ




s
p


∫

Q

(uε + ε)
(δ−λ)s

p−s




p−s
p

. (2.23)

Combining the inequality (2.22) with (2.23) results in the conclusion that

∫

Q

|∇uε|s ≤ C






∫

Q

(uε + ε)λm′




1
m′

+ 1




s
p 

∫

Q

(uε + ε)
(δ−λ)s

p−s




p−s
p

. (2.24)

Recalling Lemma 1.1 (here v = uε, ρ = λ+ 1, h = s ), we have
∫

Q

u
s(N+λ+1)

N
ε ≤ ∥uε∥

s(λ+1)
N

L∞(0,T ;Lλ+1(Ω))

∫

Q

|∇uε|s.

We improve on the above estimate by applying (2.22) and (2.24), yielding

∫

Q

u
s(N+λ+1)

N
ε ≤ C






∫

Q

(uε + ε)λm′




1
m′

+ 1




s
p + s

N

·



∫

Q

(uε + ε)
(δ−λ)s

p−s




p−s
p

.

(2.25)

Let we choose λ such that

σ = s(N + λ+ 1)
N

= λm′ = (δ − λ)s
p− s

. (2.26)

This is equivalent to

λ = (m− 1)(N(p− δ) + p)
N − pm+ p

, s = m(N(p− δ) + p)
N + 1 − δ(m− 1) ,

σ = m(N(p− δ) + p)
N − pm+ p

.

(2.27)

Invoking (2.26) in (2.25), we obtain

∫

Q

uσ
ε ≤ C



∫

Q

(uε + ε)σ




1
m′ ( s

p + s
N )+ p−s

p

+ C. (2.28)
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Since λ < δ, then m < p(N+1+δ)
p(N+1+δ)−Nδ < N/p+ 1, and hence we have

1
m′

(
s

p
+ s

N

)
+ p− s

p
< 1.

Applying Young’s inequality, we deduce
∫

Q

uσ
ε ≤ C. (2.29)

Using (2.26) in (2.24), we get

∫

Q

|∇uε|s ≤ C






∫

Q

(uε + ε)σ




1
m′

+ 1




s
p 

∫

Q

(uε + ε)σ




p−s
p

.

Utilizing (2.29) in the above estimate, allow us to conclude
∫

Q

|∇uε|s ≤ C. (2.30)

The estimates (2.29) and (2.30) prove that the sequence uε is bounded in
Ls(0, T ;W 1,s

0 (Ω)) and in Lσ(Q). Hence, the proof of item (ii) is done.
Now, we prove the estimate of uq

ε|∇uε|p−1 in Lρ(Q). Let 1 ≤ ρ < s
p−1 , apply-

ing Hölder’s inequality with the indices
(

s
ρ(p−1) ,

s
s−ρ(p−1)

)
and recalling the esti-

mate (2.30), we have

∫

Q

uqρ
ε |∇uε|ρ(p−1) ≤



∫

Q

|∇uε|s



ρ(p−1)
s



∫

Q

u
sqρ

s−ρ(p−1)
ε




s−ρ(p−1)
s

≤ C



∫

Q

u
sqρ

s−ρ(p−1)
ε




s−ρ(p−1)
s

.

(2.31)

Choosing ρ such that sqρ
s−ρ(p−1) = σ and recalling the estimate (2.29), we find that

∫

Q

uqρ
ε |∇uε|ρ(p−1) ≤ C



∫

Q

uσ
ε




s−ρ(p−1)
s

≤ C.

Hence the sequence uq
ε|∇uε|p−1 is bounded in Lρ(Q) for every 1 ≤ ρ < s

p−1 . Therefore,
the proof of the lemma is achieved.
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Lemma 2.6. Let the assumptions of Theorem 1.5 be in force. Then the solution
uε of (2.1) is uniformly bounded in Lp(0, T ;W 1,p

0 (Ω)) ∩ Lσ(Q), with σ defined in
Theorem 1.5.
Proof. Let uε be a solution of (2.1). If q = 1, we can proceed as in item (i) of
Theorem 1.3, we get the boundedness of uε in Lσ(Q).

Now, we choose φ(uε) = log(1 + uε) a test function in (2.1), we have
∫

Q

∂uε

∂t
φ(uε) +

∫

Q

(a(x, t) + uε) |∇uε|p
1 + uε

+
∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1 log(1 + uε) =

∫

Q

fε log(1 + uε).

From (1.3), uε ≥ 0 and the fact that log(1+uε) ≥ 0, may remove the third non-negative
and use (1.2), to get

∫

Q

∂uε

∂t
φ(uε) + min(α1, 1)

∫

Q

|∇uε|p ≤
∫

Q

f log(1 + uε). (2.32)

Observe that φ(s) = ∂ϕ(s)
∂s , with ϕ(s) = s log(1 + s), for all s ≥ 0. Then, we have

∫

Q

∂uε

∂t
φ(uε) =

T∫

0

∂

∂t



∫

Ω

ϕ(uε)


 =

∫

Ω

ϕ(uε(T )) −
∫

Ω

ϕ(u0) ≥ −
∫

Ω

ϕ(u0).

Using this last affirmation in (2.32) and by Hölder’s inequality, we reach that

min(α1, 1)
∫

Q

|∇uε|p ≤
∫

Q

f log(1 + uε) +
∫

Ω

ψ(u0)

≤ ∥f∥Lm(Q)∥ log(1 + uε)∥Lm′ (Q) + ∥u0∥L∞(Ω) log(1 + ∥u0∥L∞(Ω))

and this gives an a priori estimate of uε in Lp(0, T ;W 1,p
0 (Ω)) since u0 ∈ L∞(Ω) and

log(1 + uε) ∈ Lm′(Q).
If q > 1, also we proceed as in item (i) of Theorem 1.3, we get uε is bounded

in Lσ(Q). Now we prove the boundedness of uε in Lp(0, T ;W 1,p
0 (Ω)). Taking

φ(uε) = (1 − (1 + uε)1−q) as the test function in (2.1) and recall the condition (1.2),
obtaining

∫

Ω

Ψ(uε(x, T )) +
∫

Q

(α1 + uq
ε)

(uε + 1)q
|∇uε|p

+
∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1 (1 − (1 + uε)1−q)

≤
∫

Q

f(1 − (1 + uε)1−q) +
∫

Ω

Ψ(u0),

(2.33)



490 Mounim El Ouardy, Youssef El Hadfi, and Abdelaaziz Sbai

where Ψ(s) =
∫ s

0 φ(ℓ) dℓ. Observing that Ψ(uε(x, T )) ≥ 0, f ∈ Lm(Q) and the fact
that u0 ∈ L∞(Ω), we can remove the first and third non-negative term, we arrive at
that

min(α1, 1)
2q−1

∫

Q

|∇uε|p ≤
∫

Q

f + C ≤ C,

from which the boundedness of uε in Lp(0, T ;W 1,p
0 (Ω)) follows.

The proof of the boundedness of uq
ε|∇uε|p−1 in Lρ(Q) with 1 ≤ ρ < p′ is similar

to the one in Lemma 2.5.

Lemma 2.7. Let the assumptions of Theorem 1.6 be in force. Then the solution uε

of (2.1) is bounded in Lp(0, T ;W 1,p
0 (Ω)) ∩ Lq+γ+p(0, T ;L

N(q+γ+p)
N−p (Ω)). Moreover, the

sequence uq
ε|∇uε|p−1 is bounded in Lρ(Q) with

ρ = p(p+ γ + q)
qp+ (p− 1)(p+ γ + q) .

Proof. Let uε be a solution of (2.1) such that uε converges to a solution of (1.1). Let
0 < ε < 1, and using φ(uε) = ((uε + 1)γ+1 − 1) a test function in (2.1), we have

∫

Ω

Ψ(uε(x, T )) + (γ + 1)
∫

Q

(a(x, t) + uq
ε)|∇uε|p(uε + 1)γ

+
∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1 (uε + 1)γ+1

=
∫

Q

fε

(
(uε + 1)γ+1 − 1

)
+
∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1 +

∫

Ω

Ψ(u0),

where Ψ(y) =
∫ y

0 φ(ℓ) dℓ. Observing that φ is an increasing and positive function
on [0,+∞), then

∫
Ω Ψ(uε(x, T )) ≥ 0, therefore we can drop the first non-negative

term, from (1.2), (1.3) and (2.11), u0 ∈ L∞(Ω) and c0(uε + 1)q ≤ a(x, t) + uq
ε, and by

the fact that 1
(uε+1)γ+1 ≤ 1

(uε+ε)γ+1 , we deduce

(γ + 1)
∫

Q

|∇uε|p(uε + 1)q+γ + β1

∫

Q

uε|∇uε|p ≤
∫

Q

fε(uε + 1)γ+1 + C. (2.34)



Degenerate singular parabolic problems with natural growth 491

Using Hölder’s inequality with the indices
(
m = N+p

p ,m′ = N+p
N

)
, we obtain

(γ + 1)
∫

Q

uγ+q
ε |∇uε|p + β1

∫

Q

uε|∇uε|p

≤ C



∫

Q

(uε + 1)
(γ+1)(N+p)

N




N
N+p

+ C

≤ C



∫

Q

u
(γ+1)(N+p)

N
ε




N
N+p

+ C.

(2.35)

By applying the Sobolev inequality and (2.35), we have

T∫

0



∫

Ω

u
γ+q+p

p p∗

ε




p
p∗

≤ Cs

T∫

0



∫

Ω

|∇u
q+γ+p

p
ε |p




= Cs

(
q + γ + p

p

)p
T∫

0

∫

Ω

uq+γ
ε |∇uε|p

≤ C




T∫

0

∫

Ω

(uε + 1)
(γ+1)(N+p)

N




N
N+p

+ C

≤ C




T∫

0

∫

Ω

u
(γ+1)(N+p)

N
ε




N
N+p

+ C.

Since N(q+γ+p)
N−p > (γ+1)(N+p)

N , by Hölder’s inequality with indices
(

N2(q + γ + p)
(N2 − p2)(γ + 1) ,

N2(q + γ + p)
N2(q + γ + p) − (N2 − p2)(γ + 1)

)
,

we find that

T∫

0

∥uε∥q+γ+p

L
N(γ+q+p)

N−p (Ω)
≤ C




T∫

0



∫

Ω

u
N(q+γ+p)

N−p
ε




(γ+1)(N+p)
N

N−p
N(q+γ+p)




N
N+p

+ C

= C




T∫

0

∥uε∥
(γ+1)(N+p)

N

L
N(γ+q+p)

N−p (Ω)




N
N+p

+ C.
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Due to the fact that q ≥ N+p−p(N−γ)
N , we have q + γ + p > (γ+1)(N+p)

N , then we apply
Hölder’s inequality in the right-hand side of the above estimate, we arrive at

T∫

0

∥uε∥q+γ+p

L
N(γ+q+p)

N−p (Ω)
≤ C




T∫

0

∥uε∥q+γ+p

L
N(γ+q+p)

N−p (Ω)




γ+1
q+γ+p

+ C.

Note that γ+1
q+γ+p < 1, and Young’s inequality in the above estimate yields

T∫

0

∥uε∥q+γ+p

L
N(γ+q+p)

N−p (Ω)
≤ C, (2.36)

then this last estimate gives the boundedness of the sequence uε in the space
Lq+γ+p(0, T ;L

N(q+γ+p)
N−p (Ω)).

Let us assume that uε ≥ 1. Then, we return to (2.35), and we get that

β1

∫

{uε≥1}

|∇uε|p ≤ C



∫

Q

u
(γ+1)(N+p)

N
ε




N
N+p

+ C.

Since (γ+1)(N+p)
N < q + γ + p < N(q+γ+p)

N−p , we again apply Hölder’s inequality twice
combined with (2.36), which yields

β1

∫

{uε≥1}

|∇uε|p ≤ C




T∫

0

∥uε∥
(γ+1)(N+p)

N

L
N(q+γ+p)

N−p (Ω)




N
N+p

+ C

≤ C




T∫

0

∥uε∥q+γ+p

L
N(q+γ+p)

N−p (Ω)




N
N+p

+ C.

Then, from (2.36), it follows that
∫

{uε≥1}

|∇uε|p ≤ C. (2.37)

It is still necessary to investigate the behavior of ∇uε in {uε < 1}. Using T1(uε) as
a test function in (2.1), we have

T∫

0

∫

Ω

∂uε

∂t
T1(uε) +

∫

Q

(a(x, t) + uq
ε)|∇uε|p−2∇uε∇T1(uε)

+
∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1T1(uε) =

∫

Q

fεT1(uε).
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Recalling the conditions (1.2) and (1.3), we can drop the non-negative terms, then
we obtain

∫

Ω

S1(uε(x, T )) + α1

∫

{uε<1}

|∇T1(uε)|p ≤
∫

Q

fεT1(uε) +
∫

Ω

S1(u0),

where S1(y) =
∫ y

0 T1(ℓ) dℓ. Observing that T1(y)2

2 ≤ S1(y) ≤ y for every y ≥ 0.
By the fact that u0 ∈ L∞(Ω) and using (2.2), we get

∫

{uε<1}

|∇uε|p =
∫

Q

|∇T1(uε)|p ≤
∫

Q

fεT1(uε) ≤
∫

Q

f ≤ C. (2.38)

Combining (2.37) with (2.38), we deduce that

∫

Q

|∇uε|p =
∫

{uε≥1}

|∇uε|p +
∫

{uε<1}

|∇uε|p ≤ C. (2.39)

Then (2.36) and (2.39) imply that uε is uniformly bounded in Lp(0, T ;W 1,p
0 (Ω)) ∩

Lq+γ+p(0, T ;L
N(q+γ+p)

N−p (Ω)).
Now, we are going to prove the estimate of uq

ε|∇uε|p−1 in Lρ(Q). Let 1 ≤ ρ < p′,
applying Hölder’s inequality, and from the estimate (2.39), we have

∫

Q

uqρ
ε |∇uε|ρ(p−1) ≤



∫

Q

|∇uε|p



ρ(p−1)
p



∫

Q

u
qpρ

p−ρ(p−1)
ε




p−ρ(p−1)
p

≤ C



∫

Q

u
qpρ

p−ρ(p−1)
ε




p−ρ(p−1)
p

= C




T∫

0

∫

Ω

u
qpρ

p−ρ(p−1)
ε




p−ρ(p−1)
p

.

(2.40)

Choosing ρ such that qpρ
p−ρ(p−1) = q + γ + p, implies that ρ = p(p+γ+q)

pq+(p−1)(p+γ+q) . Since
N−p

p < q + γ + p < N(q+γ+p)
N−p , applying Hölder’s inequality twice in the right-hand
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side of the above inequality and recalling the estimate (2.36), we arrive at

∫

Q

uqρ
ε |∇uε|ρ(p−1) ≤ C




T∫

0



∫

Ω

u
N(p+γ+q)

N−p
ε




N−p
p




p−ρ(p−1)
p

≤ C




T∫

0



∫

Ω

u
N(p+γ+q)

N−p
ε




p+γ+q


(N−p)(p−ρ(p−1))
Np(p+γ+q)

≤ C




T∫

0

∥uε∥q+γ+p

L
N(q+γ+p)

N−p (Ω)




(N−p)(p−ρ(p−1))
Np(p+γ+q)

≤ C.

(2.41)

Therefore the estimate of the sequence uq
ε|∇uε|p−1 in Lρ(Q) is achieved.

Lemma 2.8. Let the assumption of Theorem 1.8 be in force. Then the solution uε

of (2.1) is bounded in Lp(0, T ;W 1,p
0 (Ω)) ∩L∞(Q). Moreover, the sequence uq

ε|∇uε|p−1

is bounded in Lp′(Q).

Proof. For k > 0, take Gk(uε)χ(0,s)(t), where 0 < s < T as test function in the
approximation problem (2.1), we have

s∫

0

∫

Ω

∂uε

∂t
Gk(uε) +

s∫

0

∫

Ω

(a(x, t) + uq
ε)|∇uε|p−2∇uε∇Gk(uε)

+
s∫

0

∫

Ω

d(x, t) uε|∇uε|p
(uε + ε)γ+1Gk(uε) =

s∫

0

∫

Ω

fεGk(uε).

(2.42)

Let

Ak,ε = {(x, t) ∈ Q : uε(x, t) > k}.

Observe that the function Gk(uε) is different from zero only on the set Ak,ε. Using
the conditions (1.3), uε ≥ 0 and the fact that Gk(uε) ≥ 0 in Ak,ε, we have

s∫

0

∫

Ω

d(x, t) uε|∇uε|p
(uε + ε)γ+1Gk(uε) =

∫

Ak,ε

d(x, t) uε|∇uε|p
(uε + ε)γ+1 (uε − k)

≥ β1

∫

Ak,ε

uε|∇uε|p
(uε + ε)γ+1 (uε − k) ≥ 0,
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s∫

0

∫

Ω

(a(x, t) + uq
ε)|∇uε|p∇uε∇Gk(uε) =

∫

Ak,ε(t)

(a(x, t) + uq
ε)|∇uε|p

≥ α1

∫

Ak,ε

|∇uε|p = α1

s∫

0

∫

Ω

|∇Gk(uε)|p

and
s∫

0

∫

Ω

∂uε

∂t
Gk(uε) = 1

2

∫

Ak,ε

d

dt
(uε − k)2

= 1
2

t∫

0

∫

Ω

d

dt
((uε − k)+)2

= 1
2

∫

Ω

G2
k(uε(x, s)) − 1

2

∫

Ω

G2
k(u0(x)).

Now we can drop the third non-negative term. Then inequality (2.42) becomes

1
2

∫

Ω

G2
k(uε(x, s)) + α1

s∫

0

∫

Ω

|∇Gk(uε)|p ≤
s∫

0

∫

Ω

fGk(uε) + 1
2

∫

Ω

G2
k(u0).

Passing to the supremum in s ∈ (0, T ), we get

∥Gk(uε)∥2
L∞(0,T ;L2(Ω)) + α1∥Gk(uε)∥p

Lp(0,T ;W 1,p
0 (Ω))

≤
T∫

0

∫

Ω

fGk(uε) + 1
2

∫

Ω

G2
k(u0).

(2.43)

From now on, we can follow the standard technique used for non-singular in the case
in [4] there exists a constant C∞ > 0 (independent of ε) such that

∥uε∥L∞(Q) ≤ C∞ in Q. (2.44)

We choose uε as a test function in problem (2.1). We have

1
2

∫

Ω

u2
ε(x, T ) +

∫

Q

|∇uε|p +
∫

Q

d(x, t) u2
ε|∇uε|p

(uε + ε)γ+1 =
∫

Q

fεuε + 1
2

∫

Ω

u2
0.

Since 0 < β1 ≤ d(x, t), we can drop the first and third non-negative terms. Then
we get ∫

Q

|∇uε|p ≤
∫

Q

fεuε + 1
2

∫

Ω

u2
0.
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Given that u0 ∈ L∞(Ω), Hölder’s inequality is applied twice, and from (2.2), (2.44),
it follows that

∫

Q

|∇uε|p ≤
∫

Q

fεuε + 1
2∥u0∥2

L2(Ω)

≤ ∥uε∥L∞(Q)∥f∥Lm(Q)|Q| 1
m′ + 1

2∥u0∥2
L2(Ω) ≤ C.

(2.45)

As a consequence of estimates (2.44) and (2.45), uε is uniformly bounded in
Lp(0, T ;W 1,p

0 (Ω))∩L∞(Q). From Hölder’s inequality combined with (2.44) and (2.45),
we have

∫

Q

|uq
ε|∇uε|p−1|p′

=
∫

Q

uqp′
ε |∇uε|p ≤ Cqp′

∞

∫

Q

|∇uε|p ≤ C.

Hence, the boundedness of the sequence uq
ε|∇uε|p−1 in the space Lp′(Q) is proved.

3. PROOF OF THEOREMS 1.3, 1.5, 1.6 AND 1.8

Since the proofs of Theorems 1.5, 1.6, and 1.8 are similar to those of Theorem 1.3,
here we only give in details the proof of Theorem 1.3.

Proof of Theorem 1.3. In view of Lemma 2.5 we have two cases.

(a) If p(N+1+δ)
p(N+1+δ)−Nδ ≤ m < N

p + 1, then uε is bounded in Lp(0, T ;W 1,p
0 (Ω)).

(b) If 1 < m < p(N+1+δ)
p(N+1+δ)−Nδ , then uε is bounded in Ls(0, T ;W 1,s

0 (Ω)).

Therefore,

uε ⇀ u weakly inLδ(0, T ;W 1,δ
0 (Ω)), ∀ δ ≤ s < p and a.e. inQ.

By Remark 2.3, fε − d(x, t) uε|∇uε|p

(uε+ε)γ+1 ∈ L1(Q) and from Lemma 2.5 we have
that (a(x, t) + uq

ε)|∇uε|p−2∇uε is bounded in Lρ(Q), for all 1 ≤ ρ < s
p−1 < p.

Then div((a(x, t) + uq
ε)|∇uε|p−2∇uε) is bounded in the space Lρ′(Q) ⊂ Lp′(Q) ⊂

Lp′(0, T ;W−1,p′(Ω)), and then ∂uε

∂t is bounded in the space Lp′(0, T ;W−1,p′(Ω)) +
L1(Q). Using the compactness results in [41], we obtain

uε → u strongly in L1(Q) and a.e. in Q. (3.1)

Since fε − d(x, t) uε|∇uε|p

(uε+ε)γ+1 ∈ L1(Q), we can use the same proof as in [1]. Then we
obtain

Tk(uε) → Tk(u) strongly in Lp(0, T ;W 1,p
0 (Ω)), (3.2)

and also we have
∇uε → ∇u a.e. in Q. (3.3)
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On the other hand, recalling (1.2), (3.1), (3.3), Lemma 2.5 and the dominated conver-
gence theorem implies that the sequence (a(x, t) + uq

ε)|∇uε|p−2∇uε converges weakly
to (a(x, t) + uq)|∇u|p−2∇u in Lρ(Q) for every 1 ≤ ρ < s

p−1 . Therefore, for every
φ ∈ C1

c (Ω × [0, T )),

lim
ε→0

∫

Q

(a(x, t) + uq
ε)|∇uε|p−2∇uε∇φ =

∫

Q

(a(x, t) + uq)|∇u|p−2∇u∇φ. (3.4)

Now we prove that

d(x, t) uε|∇uε|p
(uε + ε)γ+1 −→ d(x, t) |∇u|p

uγ
, strongly locally inL1(Q).

For any measurable compact subset E of Q, we have
∫

E

d(x, t)uε|∇uε|p
(uε + ε)γ+1 =

∫

E∩{uε≤k}

d(x, t)uε|∇uε|p
(uε + ε)γ+1 +

∫

E∩{uε>k}

d(x, t)uε|∇uε|p
(uε + ε)γ+1

≤
∫

E∩{uε≤k}

d(x, t) |∇uε|p
uγ

ε
+

∫

E∩{uε>k}

d(x, t) uε|∇uε|p
(uε + ε)γ+1 .

By Lemma 2.1, we get
∫

E

d(x, t) uε|∇uε|p
(uε + ε)γ+1 ≤ 1

cγ
ω

∫

E

d(x, t)|∇Tk(uε)|p +
∫

E∩{uε>k}

d(x, t) uε|∇uε|p
(uε + ε)γ+1 .

Let ν > 0 be fixed. For k > 1, we use T1(uε − Tk−1(uε)) as a test function in (2.1),
yielding

T∫

0

∫

Ω

∂uε

∂t
T1(uε − Tk−1(uε))

+
∫

Q

(a(x, t) + uq
ε)|∇un|p−2∇un∇T1(uε − Tk−1(uε))

+
∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1T1(uε − Tk−1(uε)) =

∫

Q

fεT1(uε − Tk−1(uε)).

Recalling (1.2) and the fact uε ≥ 0, we can write
∫

Ω

S1(uε(T )) + α1

∫

{k−1≤uε≤k}

|∇uε|p +
∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1T1(uε − Tk−1(uε))

≤
∫

Q

fεT1(uε − Tk−1(uε)) +
∫

Ω

S1(u0),
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where

S1(uε(T )) =
uε(T )∫

0

T1(s− Tk−1(s)) ds.

It is easy to see that S1(uε(T )) ≥ 0 a.e. in Ω. After the first and second non-negative
terms of the previous inequality are removed, we arrive at

∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1T1(uε − Tk−1(uε))

≤
∫

Q

fεT1(uε − Tk−1(uε)) +
∫

Ω

S1(u0)

=
∫

Q

fεT1(uε − Tk−1(uε)) +
∫

Ω

u0∫

0

T1(s− Tk−1(s))ds.

(3.5)

Since T1(uε − Tk−1(uε)) ≥ 0,

T1(uε − Tk−1(uε)) = 0 if uε ≤ k − 1

and

T1(uε − Tk−1(uε)) = 1 if uε > k,

recalling the condition (1.3) and the fact that uε ≥ 0, we have

∫

Q

d(x, t) uε|∇uε|p
(uε + ε)γ+1T1(uε − Tk−1(uε))

=
∫

Q∩{uε>k}

d(x, t) uε|∇uε|p
(uε + ε)+1T1(uε − Tk−1(uε))

+
∫

Q∩{uε≤k}

d(x, t) uε|∇uε|p
(uε + ε)γ+1T1(uε − Tk−1(uε))

=
∫

Q∩{uε>k}

d(x, t) uε|∇uε|p
(uε + ε)γ+1 +

∫

Q∩{uε≤k}

d(x, t) uε|∇uε|p
(uε + ε)γ+1T1(uε − Tk−1(uε))

≥
∫

E∩{uε>k}

d(x, t) uε|∇uε|p
(uε + ε)γ+1 .
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and
∫

Q

fεT1(uε − Tk−1(uε))

=
∫

Q∩{uε≤k−1}

fεT1(uε − Tk−1(uε)) +
∫

Q∩{k−1<uε≤k}

fεT1(uε − Tk−1(uε))

+
∫

Q∩{uε>k}

fεT1(uε − Tk−1(uε))

=
∫

Q∩{k−1<uε≤k}

fεT1(uε − (k − 1)) +
∫

Q∩{uε>k}

fε

≤
∫

Q∩{k−1<uε≤k}

f+

∫

Q∩{uε>k}

f =
∫

Q∩{uε≥k−1}

f,

also we have
∫

Ω

S1(u0) =
∫

Ω

u0∫

0

T1(s− Tk−1(s))ds =
∫

Ω

∫

[0,u0]∩{s≥k−1}

T1(s− Tk−1(s))ds.

Therefore, from (3.5) combined with the two later inequalities and the above equality,
we obtain

∫

E∩{uε>k}

d(x, t) uε|∇uε|p
(uε + ε)γ+1 ≤

∫

Q∩{uε≥k−1}

f +
∫

E

∫

[0,u0]∩{s≥k−1}

T1(s− Tk−1(s))ds.

It follows from f ∈ Lm(Q) and T1(s− Tk−1(s)) ∈ L1(Ω) that
∫

E∩{uε>k}

d(x, t) uε|∇uε|p
(uε + ε)γ+1 −→ 0 as k −→ ∞.

Then, there exists k0 > 1 such that
∫

E∩{uε>k}

d(x, t) uε|∇uε|p
(uε + ε)γ+1 ≤ ν

2 , ∀k ≥ k0, ∀ ε ∈ (0, T ). (3.6)

Since from (3.2) (Tk(uε) → Tk(u) strongly in Lp(0, T ;W 1,p
0 (Ω))), then there exits

εν , θν such that |E| ≤ θν , and we have

1
cγ

ω

∫

E

d(x, t)|∇Tk(uε)|p ≤ ν

2 , ∀ ε ≤ εν . (3.7)
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The estimates (3.6) and (3.7) imply that d(x, t) uε|∇uε|p

(uε+ε)γ+1 is equi-integrable. This fact,
together with the a.e. convergence of this term to d(x, t) |∇u|p

uγ , implies by the Vitali
Theorem that

d(x, t) uε|∇uε|p
(uε + ε)γ+1 −→ d(x, t) |∇u|p

uγ
, locally strongly inL1(Q). (3.8)

Let φ ∈ C1
c (Ω × [0, T )), taking φ test function in problem (2.1), by (2.2), (3.1), (3.4)

and (3.8), we can let ε → 0 yielding

−
∫

Q

u
∂φ

∂t
+
∫

Q

(a(x, t) + uq)|∇u|p−2∇u · ∇φ+
∫

Q

d(x, t) |∇u|p
uγ

φ

=
∫

Q

fφ+
∫

Ω

u0(x)φ(x, 0).

Thus, Theorem 1.3 is proved.
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