PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An adapted integration method for Volterra integral equation of the second kind with weakly singular kernel

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we consider general cases of linear Volterra integral equations under minimal assumptions on their weakly singular kernels and introduce a new product integration method in which we involve the linear interpolation to get a better approximate solution, figure out its effect and also we provide a convergence proof. Furthermore, we apply our method to a numerical example and conclude this paper by adding a conclusion
Wydawca
Rocznik
Strony
289--297
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
  • Laboratoire de Mathématiques Appliquées, University of Biskra, BP 145 RP, Biskra 07000, Algeria
  • Laboratoire de Mathématiques Appliquées, University of Biskra, BP 145 RP, Biskra 07000, Algeria
  • Laboratoire de Mathématiques Appliquées, University of Biskra, BP 145 RP, Biskra 07000, Algeria
Bibliografia
  • [1] J. M. Anderson, Mathematics for Quantum Chemistry, Courier Corporation, North Chelmsford, 2012.
  • [2] S. András, Weakly singular Volterra and Fredholm-Volterra integral equations, Studia Univ. Babeş-Bolyai Math. 48 (2003), no. 3, 147-155.
  • [3] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge Monogr. Appl. Comput. Math. 4, Cambridge University, Cambridge, 1997.
  • [4] P. Baratella and A. P. Orsi, A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math. 163 (2004), no. 2, 401-418.
  • [5] B. Bertram, On the product integration method for solving singular integral equations in scattering theory, J. Comput. Appl. Math. 25 (1989), no. 1, 79-92.
  • [6] V. Bilet, O. Dovgoshey and J. Prestin, Boundedness of Lebesgue constants and interpolating Faber bases, preprint (2016), https://arxiv.org/abs/1610.05026.
  • [7] R. C. Blattberg, B.-D. Kim and S. A. Neslin, Database Marketing: Analyzing and Managing Customers, Springer, New York, 2008.
  • [8] H. Brunner, The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes, Math. Comp. 45 (1985), no. 172, 417-437.
  • [9] H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge Monogr. Appl. Comput. Math. 15, Cambridge University, Cambridge, 2004.
  • [10] Y. Chen and T. Tang, Convergence analysis for the Chebyshev collocation methods to Volterra integral equations with a weakly singular kernel, SIAM J. Numer. Anal. 233 (2009), 938-950.
  • [11] Y. Chen and T. Tang, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comp. 79 (2010), no. 269, 147-167.
  • [12] L. J. Corwin and R. H. Szczarba, Multivariable Calculus, Monogr. Textb. Pure Appl. Math. 64, Marcel Dekker, New York, 1982.
  • [13] F. Cottet-Emard, Analyse 2: Calcul différentiel, intégrales multiples, séries de Fourier, De Boeck Supérieur, Bruxelles, 2006.
  • [14] F. d’Almeida, O. Titaud and P. B. Vasconcelos, A numerical study of iterative refinement schemes for weakly singular integral equations, Appl. Math. Lett. 18 (2005), no. 5, 571-576.
  • [15] G. Debeaumarché, F. Dorra and M. Hochart, Mathématiques PSI-PSI*: Cours complet avec tests, exercices et problèmes corrigés, Pearson Education, Paris, 2010.
  • [16] T. Diogo, N. B. Franco and P. Lima, High order product integration methods for a Volterra integral equation with logarithmic singular kernel, Commun. Pure Appl. Anal. 3 (2004), no. 2, 217-235.
  • [17] J. Douchet and B. Zwahlen, Calcul différentiel et intégral: fonctions réelles d’une ou de plusieurs variables réelles, PPUR Presses Polytechniques et Universitaires Romandes, Lausanne, 2006.
  • [18] B. S. Gan, An Isogeometric Approach to Beam Structures: Bridging the Classical to Modern Technique, Springer, Cham, 2018.
  • [19] L. Grammont, M. Ahues and H. Kaboul, An extension of the product integration method to L1 with applications in astrophysics, Math. Model. Anal. 21 (2016), no. 6, 774-793.
  • [20] L. Grammont and H. Kaboul, An improvement of the product integration method for a weakly singular Hammerstein equation, preprint (2016), https://hal.archives-ouvertes.fr/hal-01295843.
  • [21] L. Grammont, H. Kaboul and M. Ahues, A product integration type method for solving nonlinear integral equations in L1, Appl. Numer. Math. 114 (2017), 38-46.
  • [22] D. Guinin and B. Joppin, Mathématiques Analyse MP, Bréal, Paris, 2004.
  • [23] M. Hazewinkel, Encyclopaedia of Mathematics. Vol. 1: A-Integral-Coordinates, Springer, New York, 2013.
  • [24] K. B. Howell, Principles of Fourier Analysis, CRC Press, Boca Raton, 2001.
  • [25] B. A. Ibrahimoglu, Lebesgue functions and Lebesgue constants in polynomial interpolation, J. Inequal. Appl. 2016 (2016), Paper No. 93.
  • [26] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Courier Corporation, North Chelmsford, 2012.
  • [27] B. Jumarhon and S. McKee, Product integration methods for solving a system of nonlinear Volterra integral equations, J. Comput. Appl. Math. 69 (1996), no. 2, 285-301.
  • [28] N. Kovvali, Theory and Applications of Gaussian Quadrature Methods, Morgan & Claypool, Williston, 2011.
  • [29] P. K. Kythe and M. R. Schäferkotter, Handbook of Computational Methods for Integration, CRC Press, Boca Raton, 2004.
  • [30] G. Mastroianni and G. V. Milovanović, Interpolation Processes: Basic Theory and Applications, Springer, Berlin, 2008.
  • [31] P. R. Mercer, More Calculus of a Single Variable, Springer, New York, 2014.
  • [32] M. Moskowitz and F. Paliogiannis, Functions of Several Real Variables, World Scientific, Hackensack, 2011.
  • [33] F. N. Najm, Circuit Simulation, John Wiley & Sons, New York, 2010.
  • [34] Z. Nitecki, Calculus in 3D: Geometry, Vectors, and Multivariate Calculus, American Mathematical Society, Providence, 2018.
  • [35] K. M. O’Connor, Calculus: Labs for Matlab, Jones & Bartlett Learning, Burlington, 2005.
  • [36] A. Palamara Orsi, Product integration for Volterra integral equations of the second kind with weakly singular kernels, Math. Comp. 65 (1996), no. 215, 1201-1212.
  • [37] M. J. D. Powell, Approximation Theory and Methods, Cambridge University, Cambridge, 1981.
  • [38] T. J. Rivlin, An Introduction to the Approximation of Functions, Courier Corporation, North Chelmsford, 2003.
  • [39] K. H. Rosen, Handbook of Discrete and Combinatorial Mathematics, CRC Press, Boca Raton, 1999.
  • [40] I. M. Roussos, Improper Riemann Integrals, CRC Press, Boca Raton, 2016.
  • [41] S. Sarfati and M. Fegyvères, Mathématiques: Méthodes, savoir-faire et astuces, Editions Bréal, Paris, 1997.
  • [42] M. Schatzman, Numerical Analysis: A Mathematical Introduction, Oxford University, Oxford, 2002.
  • [43] S. J. Smith, Lebesgue constants in polynomial interpolation, Ann. Math. Inform. 33 (2006), 109-123.
  • [44] G. W. Stewart, Afternotes Goes to Graduate School: Lectures on Advanced Numerical Analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1998.
  • [45] S. M. Stewart, How to Integrate it: A Practical Guide to Finding Elementary Integrals, Cambridge University, Cambridge, 2017.
  • [46] G. Strang and K. Borre, Linear algebra, geodesy and GPS, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1997.
  • [47] T. Tang, X. Xu and J. Cheng, On spectral methods for Volterra integral equations and the convergence analysis, J. Comput. Math. 26 (2008), no. 6, 825-837.
  • [48] S. S. M. Wong, Computational Methods in Physics and Engineering, 2nd ed., World Scientific, Singapore, 1997.
  • [49] W. Y. Yang, W. Cao, T.-S. Chung and J. Morris, Applied Numerical Methods Using MATLAB, John Wiley & Sons, Hoboken, 2005.
  • [50] V. A. Zorich, Mathematical Analysis. I, Springer, Berlin, 2004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1f69ce7-8a43-4e9d-bb60-91feb60c33c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.