PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of statistical models for predicting muscle and mental activities during repetitive precision tasks

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was conducted to develop muscle and mental activities on repetitive precision tasks. A laboratory experiment was used to address the objectives. Surface electromyography was used to measure muscle activities from eight upper limb muscles, while electroencephalography recorded mental activities from six channels. Fourteen university students participated in the study. The results show that muscle and mental activities increase for all tasks, indicating the occurrence of muscle and mental fatigue. A linear relationship between muscle activity, mental activity and time was found while subjects were performing the task. Thus, models were developed using those variables. The models were found valid after validation using other students’ and workers’ data. Findings from this study can contribute as a reference for future studies investigating muscle and mental activity and can be applied in industry as guidelines to manage muscle and mental fatigue, especially to manage job schedules and rotation.
Rocznik
Strony
374--383
Opis fizyczny
Bibliogr. 59 poz.
Twórcy
autor
  • University of Andalas, Indonesia
  • University of Malaya, Malaysia
autor
  • Universiti Malaysia Pahang, Malaysia
Bibliografia
  • 1. Roman-Liu D, Tokarski T, Wójcik K. Quantitative assessment of upper limb muscle fatigue depending on the conditions of repetitive task load. J Electromyogr Kinesiol. 2004;14(6):671-682. doi: 10.1016/j.jelekin.2004.04.002
  • 2. Fuller JR, Lomond KV, Fung J, et al. Posture-movement changes following repetitive motion-induced shoulder muscle fatigue. J Electromyogr Kinesiol. 2009;19(6):1043–1052. doi: 10.1016/j.jelekin.2008.10.009
  • 3. Hilton M. Research on future skill demands: a workshop summary. national research council of the national academies. Washington (DC): National Academies Press; 2008.
  • 4. Nordander C, Balogh I, Mathiassen S, et al. Precision of measurements of physical workload during standardised manual handling. Part I: surface electromyography of m. trapezius, m. infraspinatus and the forearm extensors. J Electromyogr Kinesiol. 2004;14(4):443-454. doi: 10.1016/j.jelekin.2003.12.003
  • 5. You H, Kwon O. A survey of repetitiveness assessment methodologies for hand-intensive tasks. Int J Ind Ergon. 2005;35(4):353-360. doi: 10.1016/j.ergon.2004.07.006
  • 6. US Bureau of Labor Statistics. Incidence rates for nonfatal occupational injuries and illnesses involving days away from work per 10,000 full-time workers by event or exposure leading to injury or illness and selected sources of injury or illness 2003. US Department of Labor; 2005.
  • 7. Dawal SZ, Ghazilla RAR, Zadry HR, et al. incorporating ergonomics evaluation in assembly and disassembly of repetitive task: focusing on load task. Adv Mat Res. 2013;712–715:2879-2883. doi: 10.4028/www.scientific.net/AMR.712-715.2879
  • 8. Moradifar R, Hoveidi H, Givehchi S, et al. Examining fatigue and insomnia symptoms among workers of a gas transmission industry in 2013. Electronic Physician. 2014;6(2):827-31.
  • 9. Hughes L, Babski-Reeves K, Smith-Jackson T. Effects of psychosocial and individual factors on physiological risk factors for upper extremity musculoskeletal disorders while typing. Ergonomics. 2007;50(2):261–274. doi: 10.1080/00140130601049378
  • 10. Bloemsaat JG, Meulenbroek RGJ, Van Galen GP. Differential effects of mental load on proximal and distal arm muscle activity. Exp Brain Res. 2005;167(4):622-634. doi: 10.1007/s00221-005-0066-2
  • 11. Zadry HR, Dawal SZ, Taha Z. The relation between upper limb muscle and brain activity in two precision levels of repetitive light tasks. Int J Occup Saf Ergon. 2011;17(4):373–384. doi:10.1080/10803548.2011.11076901
  • 12. Zadry HR, Dawal SZ, Taha Z. Combination of electromyography and electroencephalography measurements in designing repetitive task in industry. Adv Sci Lett. 2011;4:2498-2502. doi: 10.1166/asl.2011.1507
  • 13. Karwowski W, Marras WS. Occupational ergonomics: engineering and administrative controls. Boca Raton (FL): CRC Press; 2003.
  • 14. Szeto GPY, Lin JKM. A study of forearm muscle activity and wrist kinematics in symptomatic office workers performing mouse-clicking tasks with different precision and speed demands. J Electromyogr Kinesiol. 2011;21:59-66. doi: 10.1016/j.jelekin.2010.06.006
  • 15. Nakata M, Hagner IM, Jonsson B. Perceived musculoskeletal discomfort and electromyography during repetitive light work. J Electromyogr Kinesiol. 1992;2(2):103-111. doi: 10.1016/1050-6411(92)90021-A
  • 16. Escorpizo RS, Moore AE. Quantifying precision and speed effects on muscle loading and rest in an occupational hand transfer task. Int J Ind Ergon. 2007;37(1):13-20. doi: 10.1016/j.ergon.2006.09.001
  • 17. Wartenberg C, Dukic T, Falck A, et al. The effect of assembly tolerance on performance of a tape application task: a pilot study. Int J Ind Ergon. 2004;33:369-379. doi: 10.1016/j.ergon.2003.10.009
  • 18. Li G, Buckle P. A practical method for the assessment of work-related musculoskeletal risks quick exposure check (QEC). Proc Hum Fact Ergon Soc Annu Meet. 1998;42(19):1351-1355.
  • 19. Konrad P. The ABC of EMG. A practical introduction to kinesiological electromyography. Scottsdale (AZ), Noraxon; 2005.
  • 20. Sommerich C, Joines S, Hermans V, et al. Use of surface electromyography to estimate neck muscle activity. J Electromyogr Kinesiol. 2000;10(6):377-398. doi: 10.1016/S1050-6411(00)00033-X
  • 21. Minning S, Eliot CA, Uhl TL, et al. EMG analysis of shoulder muscle fatigue during resisted isometric shoulder elevation. J Electromyogr Kinesiol. 2007;17(2):153-159. doi: 10.1016/j.jelekin.2006.01.008
  • 22. Forsyth A, Hiler R, Michels J, et al. Electromyography (EMG) of the trapezius muscles during clerical work. J Under Res. 2000;3:6:287–292.
  • 23. Hermens HJ, Freriks B, Disselhorst-Klug C, et al. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361-374. doi: 10.1016/S1050-6411(00)00027-4
  • 24. Andreassi J. Psychophysiology: human behavior and physiological response. Mahvah (NJ): Erlbaum; 2007.
  • 25. Teplan M. Fundamentals of EEG measurement. Meas Sci Rev. 2002;2(2):1-11.
  • 26. Bosch T, De Looze M, Kingma I, et al. Electromyographical manifestations of muscle fatigue during different levels of simulated light manual assembly work. J Electromyogr Kinesiol. 2009;19(4):e246–e256. doi: 10.1016/j.jelekin.2008.04.014
  • 27. Bartuzi P, Roman-Liu D, Wiśniewski T. The Influence of fatigue on muscle temperature. Int J Occup Saf Ergon. 2012;18(2):233–243. doi: 10.1080/10803548.2012.11076931
  • 28. Taelman J, Van Huffel S, Spaepen A. Wavelet-independent component analysis to remove electrocardiography contamination in surface electromyography. IEEE Eng Med Biol. 2007;1:682–5.
  • 29. Basmajian J, DeLuca CJ. Muscles alive: their functions revealed by electromyography. 5th ed. Baltimore (MD): Williams and Wilkins; 1985.
  • 30. Gerleman DG, Cook TM. Instrumentation. In: Soderberg GL, editor. Selected topics in surface electromyography for use in the occupational setting: expert perspectives. US Department of Health and Human Services - National Institute for Occupational Safety and Health; 1992. p. 43–68. Available from: http://www.cdc.gov/niosh/docs/91-100/pdfs/91-100.pdf
  • 31. De Luca G. Fundamental concepts in EMG signal acquisition. Delsys; 2003. Available from: https://www.delsys.com/Attachments_pdf/WP_Sampling1-4.pdf
  • 32. Portney LG, Watkins MP. Foundations of clinical research. Upper Saddle River (NJ): Pearson/Prentice Hall; 2000.
  • 33. Lane, David M. Standard error of the estimate. [cited 2014 March 12]. Available from: http://onlinestatbook.com/2/regression/accuracy.html
  • 34. Zhang FR, He LH, Wu SS, et al. Quantify work load and muscle functional activation patterns in neck-shoulder muscles of female sewing machine operators using surface electromyogram. Chin Med J. 2011;124(22):3731–3737.
  • 35. Julie N, Côté JN, Raymond D, et al. Differences in multi-joint kinematic patterns of repetitive hammering in healthy, fatigued and shoulder-injured individuals. Clin Biomech. 2005;20(6):581-590. doi: 10.1016/j.clinbiomech.2005.02.012
  • 36. Andersen J, Kaergaard A, Mikkelsen S, et al. Risk factors in the onset of neck/shoulder pain in a prospective study of workers in industrial and service companies. Occup Environ Med. 2003;60(9):649-654. doi: 10.1136/oem.60.9.649
  • 37. Nussbaum MA. Static and dynamic myoelectric measures of shoulder muscle fatigue during intermittent dynamic exertions of low to moderate intensity. Eur J Appl Physiol. 2001;85(3):299-309. doi: 10.1007/s004210100454
  • 38. Tetteh EG. A pilot laboratory study of EMG back activity among normal versus overweight workers during material handling on multi-level racks [doctoral dissertation]. West Lafayette (IN): Purdue University; 2007.
  • 39. Farina D, Arendt-Nielsen L, Merletti R, et al. Effect of experimental muscle pain on motor unit firing rate and conduction velocity. J Neurophysiol. 2004;91(3):1250-1259. doi: 10.1152/jn.00620.2003
  • 40. Hägg G. Static workload and occupational myalgia - a new explanation model. In: Andersen PA, Hobart DJ, Danoff JV, eds. Electromyographical Kinesiology. Amsterdam: Elsevier; 1991. p. 141–144.
  • 41. Waersted M. Human muscle activity related to non-biomechanical factors in the workplace. Eur J Appl Physiol. 2000;83(2):151-158. doi: 10.1007/s004210000273
  • 42. Pal N, Chuang C, Ko L, et al. EEG-based subject-and session-independent drowsiness detection: an unsupervised approach. EURASIP J Adv Sig Pr. 2008;2008:1-11.
  • 43. Seen K, Mohd Tamrin S, Meng G. Driving fatigue and performance among occupational drivers in simulated prolonged driving. Glob J Health Sci. 2010;2(1):167-177.
  • 44. Åkerstedt T, Kecklund G, Gillberg M. Sleep and sleepiness in relation to stress and displaced work hours. Physiol Behav. 2007;92(1-2):250-255. doi: 10.1016/j.physbeh.2007.05.044
  • 45. Jap BT, Lal S, Fischer P, et al. Using EEG spectral components to assess algorithms for detecting fatigue. Expert Syst Appl. 2009;36 (2 Pt 1), 2352-2359. doi: 10.1016/j.eswa.2007.12.043
  • 46. Byström SEG, Mathiassen SE, Fransson-Hall C. Physiological effects of micropauses in isometric hand grip exercises. Eur J Appl Physiol. 1991;63:405–411. doi: 10.1007/BF00868070
  • 47. Abdul-latif AA, Cosic I, Kumar DK, et al. Power changes of EEG signals associated with muscle fatigue: the root mean square analysis of EEG bands. In: Proceedings of the Intelligent Sensors, Sensor Networks and Information Processing Conference, Australia, 2004. p. 534–534.
  • 48. Au AK, Keir PJ. Interfering effects of multitasking on muscle activity in the upper extremity. J Electromyogr Kinesiol. 2007;17(5):578–586. doi: 10.1016/j.jelekin.2006.06.005
  • 49. Iwanaga K, Saito S, Shimomura Y, et al. The effect of mental loads on muscle tension, blood pressure and blink rate. J Physiol Anthropol Appl Human Sci. 2000;19(3):135–141. doi: 10.2114/jpa.19.135
  • 50. Krantz G, Forsman M, Lundberg U. Consistency in physiological stress responses and electromyographic activity during induced stress exposure in women and men. Integr Phys Beh Sci. 2004;39(2):105–118. doi: 10.1007/BF02734276
  • 51. Lundberg U, Forsman M, Zachau G, et al. Effects of experimentally induced mental and physical stress on motor unit recruitment in the trapezius muscle. Work Stress. 2002;16(2):166–178. doi: 10.1080/02678370210136699
  • 52. Lundberg U. Psychophysiology of work: stress, gender, endocrine response, and work-related upper extremity disorders. Am J Ind Med. 2002;41(5):383–392. doi: 10.1002/ajim.10038
  • 53. Coorevits PLM, Danneels LA, Ramon H, et al. Statistical modelling of fatigue-related electromyographic median frequency characteristics of back and hip muscles during a standardized isometric back extension test. J Electromyogr Kinesiol. 2005;15:444–451. doi: 10.1016/j.jelekin.2005.02.002
  • 54. Solnik S, Devita P, Grzegorczyk K, et al. EMG frequency during isometric, submaximal activity: a statistical model for biceps Brachii. Acta Bioeng Biomech. 2010;2(3):21–8.
  • 55. Finsen L, Sogaard K, Jensen C, et al. Muscle activity and cardiovascular response during computer mouse work with and without memory demands. Ergonomics. 2001;44(14):1312–1329. doi: 10.1080/00140130110099065
  • 56. Choobineh A, Tabatabaei SH, Mokhtarzadeh A, et al. Musculoskeletal problems among workers of an Iranian rubber factory. J Occup Health. 2007;49(5):418–423. doi: 10.1539/joh.49.418
  • 57. Coury HJCG, Porcatti IA, Alem MER, et al. Influence of gender on work-related musculoskeletal disorders in repetitive tasks. Int J Ind Ergon. 2002;29(1):33–39. doi: 10.1016/S0169-8141(01)00047-6
  • 58. Rangan S, Van Dongen HPA. Quantifying fatigue risk in model-based fatigue risk management. Aviat Space Environ Med. 2013;84:155-157. doi: 10.3357/ASEM.3455.2013
  • 59. Byström SEG, Mathiassen SE, Fransson-Hall C. Physiological effects of micropauses in isometric hand grip exercises. Eur J Appl Physiol. 1991;63:405-411. doi: 10.1007/BF00868070
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1f0aa63-8b41-4ba6-a70b-0d27d78dd51f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.