PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermomechanical modeling of a single splat solidification in plasma spraying

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In plasma spraying, the residual stress is one of the important factors that reduce the strength and shorten the service lifetime of the spray coatings. It is therefore essential to investigate the evolution of the temperature and the distribution of the residual stresses, which are primarily induced by initial temperature difference and thermal expansion coefficient mismatch between the splat and the substrate. Design/methodology/approach: As the plasma spraying process involves the solidification and cooling of extremely tiny molten metal droplets in a very short time, it is very difficult to observe the procedure directly. In this paper, a finite element model involving the temperature and residual stress simulation of a single NiCoCrAlY particle splat in plasma spraying when cooled on the carbon steel substrate is presented. Findings: The numerical analysis results show that the temperature rise is more evident within the interior than on the top surface of the substrate. The maximum residual stresses of about 170 MPa appear at the central part of the splat. Research limitations/implications: Future work should integrate the flattening process with the solidification and cooling of the droplet. Practical implications: It will be helpful to the understanding and control of residual stresses in plasma spraying. Originality/value: This research simulates the evolution temperature and residual stress distribution during the solidification and cooling process on the single splat level in plasma spraying.
Rocznik
Strony
327--330
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
autor
  • Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, 116024, P. R. China
autor
  • College of Mechanical Engineering and Automation, HQU, Quanzhou 362021 P.R. China
autor
  • Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, 116024, P. R. China
autor
  • College of Mechanical Engineering and Automation, HQU, Quanzhou 362021 P.R. China
autor
  • College of Mechanical Engineering and Automation, HQU, Quanzhou 362021 P.R. China
Bibliografia
  • [1] J.C. Fang, W.J. Xu, Plasma spray forming, Journal of Materials Processing Technology 129 (2002) 288-293.
  • [2] H. Herman, S. Sampath, Plasma spray forming, Industrial Ceramics (Italy) 18 (1998) 1 29-32.
  • [3] A. Geibel, L. Froyen, L. Delaey, Plasma spray forming: an alternate route for manufacturing freestanding components, Journal of Thermal Spray Technology 5 (1996) 4 419-430.
  • [4] P. Fauchais, Understanding plasma spraying, Journal of Physics D: Applied Physics 37 (2004) R86-108.
  • [5] P. Fauchais, M. Fukumoto, A. Vardelle, M. Vardelle, Knowledge concerning splat formation: an invited review, Journal of Thermal Spray Technology, 13 (2004) 3 337-360.
  • [6] J. Mostaghimj, Modelling droplet impact in plasma spray processes, Pure and Applied Chemistry, 70 (1998) 6 1209-1215.
  • [7] H.W. Ng, Z. Gan, A finite element analysis technique for predicting as-sprayed residual stresses generated by the plasma spray coating process, Finite Elements in Analysis and Design 41 (2005) 1235–1254.
  • [8] R.K. Chin, J.L. Beuth, C.H. Amon, Thermomechanical modelling of molten metal droplet solidification applied to layered manufacturing, Mechanics of Materials 24 (1996) 257- 271.
  • [9] R. Knight, R.W. Smith, Z. Xiao, T.T. Hoffman, Particle velocity measurements in HVOF and APS Systems, Thermal Spray Industrial Applications Conference Proceedings, (1994) ASM International, Materials Park, Ohio, 331-336.
  • [10] J.R. Fincke, W.D. Swank, R.L. Bewley, D.C. Haggard, M. Gevelber, D. Wroblewski, Diagnostics and control in the thermal spray process, Surface and Coatings Technology 146-147 (2001) 537–543.
  • [11] S. Guessasma, G. Montavon, C. Coddet, Velocity and temperature distributions of alumina–titania in-flight particles in the atmospheric plasma spray process, Surface and Coatings Technology 192 (2005) 70-76.
  • [12] Mo Chung, R.H. Rangel, Parametric study of metal droplet deposition and solidification process including contact resistance and undercooling effects, International Journal of Heat and Mass Transfer 44 (2001) 605-618.
  • [13] J. Mostaghimi, M. Pasandideh-Fard, S. Chandra, Dynamics of splat formation in plasma spray coating process, Plasma Chemistry and Plasma Processing 22 (1) (2002) 59-84.
  • [14] M. Janik, H. Dyja, S. Berski, G. Banaszek, Two-dimensional thermomechanical analysis of continuous casting process, Journal of Materials Processing Technology 153–154 (2004) 578–582.
  • [15] M. Shariyat, M. R. Eslami, Isoparametric finite-element thermoelastoplastic creep analysis of shells of revolution, International Journal of Pressure Vessels and Piping, 68 (1996) 3 249-259.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1ee20ae-c290-4045-bae8-24ed3193e4e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.