PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low-loss connection of hybrid fibre optic systems with low sensitivity to wavelength

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a method for adjusting light waves propagating in systems composed of photonic fibers, light sources and detection elements. The paper presents the properties of these connections in terms of the loss of signal transmission. Different fiber core areas were analyzed, and measurements of the mode-field diameters (MFDs) of selected fiber structures are presented. The study analyzed two types of LMA (Large Mode Area) fiber structures, and the mode-field diameters of these structures were measured on the basis of the radiation distribution obtained under near-field conditions. The results are compared to the values obtained for a SMF-28 single-mode fiber. The LMA structures analyzed in the paper are characterized by low sensitivity of the MFD parameter to the length of transmitted waves, which creates the possibility of their use as intermediate fibers when connecting optical fibers of different diameters. In the wavelength range from 800 nm to 1600 nm, a 3.5% MFD change was observed for the first investigated LMA structure, and a 1% change was observed for the second. In addition, measurements of the mode-field diameters were also made using the transverse offset method for comparison of the results.
Rocznik
Strony
697--704
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • Marie Curie-Sklodowska University, Faculty of Chemistry, Laboratory of Optical Fibers Technology, Sklodowska Sq. 3, 20-031 Lublin, Poland
Bibliografia
  • [1] Mroczka, J., Wysoczański, D. (2000). Plane-wave and Gaussian-beam scattering on an infinite cylinder. Optical Engineering, 39(3), 763-770.
  • [2] Wojcik, J., Urbańczyk, W., Bock, W., Janoszczyk, B., Mergo, P., Makara, M., Poturaj, K., Spytek, W. (1999). Prototype of the side-hole HB optical fiber. Proceedings SPIE, 3731.
  • [3] Hotra, Z., Mykytyuk, Z., Sushynskyy, O., Hotra, O., Yasynovska, O., Kisala, P. (2010). Sensor systems with optical channel of information transferring. Electrotechnical Rewiev, 86(10), 21-23.
  • [4] Girasole, T., Bultynck, H., Gouesbet, G., Gréhan, G., Le Meur, F., Le Toulouzan, J.N., Mroczka, J., Ren, K.F., Rozé, C., Wysoczanski, D. (1997). Cylindrical fibre orientation analysis by light scattering. Part 1: Numerical aspects. Particle and Particle Systems Characterization, 14(4), 163-174.
  • [5] Girasole, T., Gouesbet, G., Gréhan, G., Le Toulouzan, J.N., Mroczka, J., Ren, K.F., Wysoczanski, D. (1997). Cylindrical fibre orientation analysis by light scattering. Part 2: Experimental aspects. Particle and Particle Systems Characterization, 14(5), 211-218.
  • [6] Girasole, T. Le Toulouzan, J. N., Mroczka, J., Wysoczanski, D. (1997). Fiber orientation and concentration analysis by light scattering: Experimental setup and diagnosis. Review of Scientific Instruments, 68(7), 2805-2811.
  • [7] Kisała, P. (2013). Measurement of the maximum value of non-uniform strain using a temperatureinsensitive fibre Bragg grating method. Opto-electronics Review, (21)3, 293-302.
  • [8] Kisała, P. (2012). Application of inverse analysis to determine the strain distribution with optoelectronic method insensitive to temperature changes. Applied Optics, 51(16), 3599-3604.
  • [9] Knight, J. C. (2003). Photonic crystal fibres. ature, 424, 847-851.
  • [10] Czerwiński, M., Mroczka, J., Girasole, T., Gouesbet, G., Grehan, G. (2001). Light-Transmittance Predictions Under Multiple-Light-Scattering Conditions. I. Direct Problem: hybrid-Method Approximation. Applied Optics, 40(9), 1514-1524.
  • [11] Czerwiński, M., Mroczka, J., Girasole, T., Gouesbet, G., Grehan, G.(2001). Light-Transmittance Predictions Under Multiple-Light-Scattering Conditions. II. Inverse Problem: Particle Size Determination. Applied Optics, 40(9), 1525-1531.
  • [12] Mroczka, J. (2013). The cognitive process in metrology. Measurement, 46, 2896-2907.
  • [13] Knight, J. C. (1998). Large mode area photonic crystal fibre. Electron. Lett., 34, 1347.
  • [14] Folkenberg, J.R., Nielsen, M.D., Mortensen, N.A., Jakobsen, C., Simonsen, H.R. (2004). Polarization maintaining large mode area photonic crystal fiber. Optics Express, 12(5), 956-960.
  • [15] Nielsen, M.D., Folkenberg, J.R., Mortensen, N.A., Bjarklev, A. (2004). Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers. Optics Express, (12)3, 430-435.
  • [16] Young, M. (1998). Mode-Field Diameter of Single-Mode Optical Fiber by Far-Field Scanning. Applied Optics, 37(36), 8361-8361.
  • [17] Billington, R. (1999). Effective Area of Optical Fibres Definition and Measurement Techniques. Centre for Optical and Environmental Metrology.
  • [18] Miyagi, K., Namihira, Y., Razzak, S., Kaijage, S., Begum, F. (2010). Effective Area of Optical Fibers-Definition and Measurement Techniques. Optical Review, 17(4), 388-392.
  • [19] Koshiba, M. Saitoh, K. (2003). Structural dependence of effective area and mode field diameter for holey fibers. Optics Express, 11(15), 1746-1756.
  • [20] Nakamura, A., Ohashi, M. (2010). Definition of MFD of photonic crystal fibers. Communications and Photonics Conference and Exhibition (ACP).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1e7363c-df71-4420-82c8-a18b22cb77d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.