PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Ultra-wide bandwidth wavelength selective couplers based on the all solid multi-core Ge-doped fibre

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel wavelength selective coupler based on the all solid nine-core Ge-doped fibre has been proposed. The wavelength selective coupler is based on the phenomenon of a multi-core coupling. All the cores are made of Ge-doped silica and the index of central core is larger than the outer core. At the fixed fibre length, the different wavelength can be selected. The performances of coupling and propagation characteristics have been numerically investigated by using a full beam propagation method (BPM). Simulation results show that the all solid nine-core Ge-doped fibre can achieve simultaneous shorter coupler length and wideband filtering characteristics. The 0.763 mm and 0.745 mm wavelength selective coupler are proposed to achieve different wavelength division and the bandwidth is up to the 400 nm, and 300 nm, respectively.
Twórcy
autor
  • College of Automation, Harbin Engineering University, Harbin, 150001, China
autor
  • College of Automation, Harbin Engineering University, Harbin, 150001, China
autor
  • College of Automation, Harbin Engineering University, Harbin, 150001, China
Bibliografia
  • 1. Y. Yan, J. Toulouse, I. Velchev, and V.R. Slava, “Decoupling and asymmetric coupling in triple-core photonic crystal fibres”, J. Opt. Soc. Am. B25, 1488-1495 (2008).
  • 2. D. Dorosz, and M. Kochanowicz, “Model analysis of supermode generation in active 5-core optical fibre”, Opto-Electron. Rev. 19, 40-45 (2011).
  • 3. X. Liu, S. Chandrasekhar, X. Chen, P.J. Winzer, Y. Pan, T.F. Taunay, B. Zhu, M. Fishteyn, M.F. Yan, J.M. Fini, E.M. Monberg, and F.V. Dimarcello, “1.12-Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space division multiplexed transmission with 60-b/s/Hz aggregate spectral efficiency”, Opt. Express 19, B958-B964 (2011).
  • 4. I. Gasulla and J. Capmany, “Microwave Photonics Applications of Multicore Fibres”, IEEE Photonics J. 4, 877-888 (2012).
  • 5. B.M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fibre laser” , Appl. Phys. B105, 213-217 (2011).
  • 6. Y. Huo, P. Cheo, and G. King, “Fundamental mode operation of a 19-core phase-locked Yb-doped fibre amplifier”, Opt. Express 12, 6230-6239 (2004).
  • 7. B. Zhu, T.F. Taunay, M.F. Yan, J.M. Fini, M. Fishteyn, E.M. Monberg, and F.V. Dimarcello, “Seven-core multicore fibre transmissions for passive optical network”, Opt. Express 18, 11117-11122 (2012).
  • 8. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “coupled-mode theory and coupled-power theory”, Opt. Express 19, B102-B111 (2011).
  • 9. K. Szaniawska, T. Nasilowski, and T.R. Wolinski, “Simplified coupling power model for fibres fusion”, Opto-Electron. Rev. 17, 193-199 (2009).
  • 10. V. Grubsky, D.S. Starodubov, and J. Feinberg, “Wavelength-selective coupler and add-drop multiplexer using long-period fibre gratings”, Opt. Fibre Commun. Conf. 4, 28-30 (2000).
  • 11. D.C. Johnson, K.O. Hill, F. Bilodeau, and S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner”, Electron. Lett. 23, 668-669 (1987).
  • 12. X. Sun, “Wavelength-selective coupling of dual-core photonic crystal fibre with a hybrid light-guiding mechanism”, Opt. Lett. 32, 2484-2486 (2007).
  • 13. J. Zimmermann, M. Kamp, A.Forchel, and R. Marz, “Photonic crystal waveguide directional couplers as wavelength selective optical filters”, Opt. Commun. 230, 387-392 (2004).
  • 14. M.S. Yataki, D.N. Payne, and M.P. Varnham, “All-fibre polarising beamsplitter”, Electron. Lett. 21, 249-251 (1985).
  • 15. R. Zengerle and O. Leminger, “Narrow-band wavelength-selective directional couplers made of dissimilar single-mode fibres”, J. Lightwave Technol. 5, 1196-1198 (1987).
  • 16. B. Malo, F. Bilodeau, K.O. Hill, D.C. Johnson, and J. Albert, “Unbalanced dissimilar-fibre Mach-Zehnder interferometer: application as filter”, Electron. Lett. 25, 1416-1417 (1989).
  • 17. Y. Yan and J. Toulouse, “Polarization dependence of the inter-core coupling in triple-core photonic crystal fibres”, J. Opt. Soc. Am. B26, 762-767 (2009).
  • 18. S. Zheng, G. Ren, Z. Lin, and S.S. Jian, “Mode-coupling analysis and trench design for large-mode-area low-ross-talk multicore fibre”, Appl. Opt. 52, 4541-4548 (2013).
  • 19. H. Zhou, G. Xia, and Y. Fan “Output characteristics of weak-coupling fibre grating external cavity semiconductor laser”, Opto-Electron. Rev. 13, 27-30 (2005).
  • 20. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fibre”, Opt. Express 19, 16576-–16592 (2011).
  • 21. S. Liu, S.G. Li, G.B. Yin, R.P. Feng, and X.Y. Wang, “A novel polarization splitter in ZnTe tellurite glass three-core photonic crystal fibre”, Opt. Commun. 285, 1097-1102 (2012).
  • 22. A. Rizea “Design technique for all-dielectric non-polarizing beam splitter plate”, Opto-Electron. Rev. 20, 96–99 (2012).
  • 23. Y. Tottori, T. Kobayashi, and M. Watanabe, “Low loss optical connection module for seven-core multicore fibre and seven single-mode fibres”, IEEE Photonics Tech. L. 24, 1926-1928 (2012).
  • 24. J. Sakaguchi, W. Klaus, B. J. Puttnam, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tsuchida, K. Maeda, M. Tadakuma, K. Imamura, R. Sugizaki, T. Kobayashi, Y. Tottori, M. Watanabe, and R.V. Jensen, “19-core MCF transmission system using EDFA with shared core pumping coupled via free-space optics”, Opt. Express 22, 90-95 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1e6acfd-b94d-4c24-86cb-54156ee919fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.