Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Radial slide bearings are typically used in turbochargers (among other applications), owing to their simple design and advantages, such as good heat dissipation from the working zone, high stability of operation and low resistance to motion. The current research is both experimental and theoretical. In a state of static equilibrium, the operation of a bearing can be described using a system of five coupled differential equations. The bearing’s operating parameters are related to the type of oil used. Two types of oil, VG46 and VG68, were used for testing. In accordance with the applicable standard, the tolerance of kinematic viscosity of oils is ±10%. The results imply a significant influence of the oil class and viscosity tolerance on the resistance to motion caused by internal friction forces in the oil. In conclusion, it seems advisable that the calculation procedures currently in use should include the slide bearing design optimisation by taking the resistance to motion in the bearing into account.
Czasopismo
Rocznik
Tom
Strony
27--40
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
- Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics; al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
- Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics; al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
- Silesian University of Technology, Faculty of Transport and Aviation Engineering; Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
- 1. Nikolic, N. & Antonic, Z. & Doric, J. & Ruzic, D. & Galambos, S. & Jocanovic, M. & Karanovic, V. An analytical method for the determination of the temperature distribution in short journal bearing oil film. Symmetry. 2020. Vol. 12. No. 4. Paper No. 539.
- 2. Ramos, D.J. & Daniel, G.B. A new concept of active hydrodynamic bearing for application in rotating systems. Tribology International. 2021. Vol. 153. Paper No. 106592.
- 3. Sadabadi, H. & Nezhad, A.S. Nanofluids for Performance Improvement of Heavy machinery. Journal Bearings: A Simulation Study. Nanomaterials. 2020. Vol. 10. Paper No. 2120.
- 4. Strzelecki, S. & Kuśmierz, L. & Poniewaz, G. Thermal deformation of pads in tilting 5-pad journal bearing. Eksploatacja i Niezawodność – Maintenance and Reliability. 2008. Vol. 38. No. 2. P. 12-16.
- 5. Wang, Y. & Fang, X. & Zhang, C. & Chen, X. & Lu, J. Lifetime prediction of self-lubricating spherical plain bearings based on physics-of-failure model and accelerated degradation test. Eksploatacja i Niezawodność – Maintenance and Reliability. 2016. Vol. 18. No. 4. P. 528-538.
- 6. Zhang, Y. & Yang, L. & Li, Z. & Yu, L. Research on static performance of hydrodynamically lubricated thrust slider bearing based on periodic harmonic. Tribology International. 2016. Vol. 95. P. 236-244.
- 7. Peixoto, T.F. & Cavalca, K.L. Thrust bearing coupling effects on the lateral dynamics of turbochargers. Tribology International. 2020. Vol. 145. Paper No. 106166.
- 8. Kim, S. & Palazzolo, A.B. Effects of thermohydrodynamic (THD) floating ring bearing model on rotordynamic bifurcation. International Journal of Non-Linear Mechanics. 2017. Vol. 95. P. 30-41.
- 9. Tian, L. & Wang, W.J. & Peng, Z.J. Dynamic behaviours of a full floating ring bearing supported turbocharger rotor with engine excitation. Journal of Sound and Vibration. 2011. Vol. 330. P. 4851-4874.
- 10. Chen, W.J. Rotordynamics and bearing design of turbochargers. Mechanical Systems and Signal Processing. 2012. Vol. 29. P. 77-89.
- 11. Wang, X. & Li, H. & Meng, G. Rotordynamic coefficients of a controllable magnetorheological fluid lubricated floating ring bearing. Tribology International. 2017. Vol. 114. P. 1-14.
- 12. Buluschek, B. Das Schwimmbüchsenlager bei stationärem betrieb. PhD thesis. Institut für Grundlagen der Maschinen Konstruktion. ETH Zürich. 1980. [In German: Floating bush bearing under steady-state conditions. PhD thesis. Institute of Fundamentals Mechanical Engineering. ETH Zürich. 1980].
- 13. Clarke, D.M. & Fall, C. & Hayden, G.N. & Wilkinson, T.S. A Steady – State Model of an Floating Ring Bearing, Including Thermal Effects. Trans. ASME – Journal of Tribology. 1992. Vol. 114.
- 14. Domes, B. Amplituden der Unwucht – und Selbsterregen Schwingungen Hochtourigermit Rotierenden und nichtrotierenden Schwimmenden Büchsen. PhD thesis. Universität Karlsruhe. 1980. [In German: Amplitudes of imbalance and self-excited vibrations of high-speed rotating and non-rotating floating bushes. PhDthesis. University of Karlsruhe. 1980].
- 15. Krause, R. Experimentelle Untersuchungeines dynamisch beanspruchten Schwimmbüchsenlagers. PhD thesis. Institutfür Grundlagen der Maschinen Konstruktion. ETH Zürich. 1987. [In German: Experimental investigation of a dynamically stressed floating bush bearings. PhD thesis. Institute of Fundamentals Mechanical Engineering. ETH Zürich. 1980].
- 16. Allmaier, H. & Priestner, C. & Reich, F.M. & Priebsch, H.H. & Novotny-Farkas, F. Predicting friction reliably and accurately in journal bearings—extending the EHD simulation model to TEHD.
- Tribology International. 2013. Vol. 58. P. 20-28.
- 17. Zhang, Y. & Yang, L. & Li, Z. & Yu, L. Research on static performance of hydrodynamically lubricated thrust slider bearing based on periodic harmonic Research on static performance of hydrodynamically lubricated thrust slider bearing based on periodic harmonic. Tribology International. 2016. Vol. 95. P. 236-244.
- 18. Sander, D.E. & Allmaier, H. & Priebsch, H.H. & Witt, M. & Skiadas, A. Simulation of journal bearing friction in severe mixed lubrication – Validation and effect of surface smoothing due to running. Tribology International. 2016. Vol. 96. P. 173-183.
- 19. Li, Y. & Liang, F. & Zhou, Y. & Ding, S. & Du, F. & Zhou, M. & Bi, J. & Cai, Y. Numerical and experimental investigation on thermohydrodynamic performance of turbocharger rotor-bearing system. Applied Thermal Engineering. 2017. Vol. 121. P. 27-38.
- 20. Adiletta, G. Stability Effects of Non-Circular Geometry in Floating Ring Bearings. Lubricants. 2020. Vol. 8. No 99.
- 21. Blaut, J. & Breńkacz, Ł. Applications of the Teager-Kaiser energy operator in diagnostics of a hydrodynamic bearing. Eksploatacja i Niezawodność – Maintenance and Reliability. 2020. Vol. 22. No. 4. P. 757-765.
- 22. Bernhauser, L. & Heinisch, M. & Schörgenhumer, M. & Nader, M. The Effect of Non-Circular Bearing Shapes in Hydrodynamic Journal Bearings on the Vibration Behavior of Turbocharger Structures. Lubricants. 2017. Vol. 5. No. 6.
- 23. Chasalevris, A. & Louis, J-C. Evaluation of Transient Response of Turbochargers and Turbines Using Database Method for the Nonlinear Forces of Journal Bearings. Lubricants. 2019. Vol. 7. No. 9. Paper No. 78.
- 24. Dyk, Š. & Smolík, L. & Rendl, J. Predictive capability of various linearization approaches for floating-ring bearings in nonlinear dynamics of turbochargers. Mechanism and Machine Theory. 2020. Vol. 149. No. 103843.
- 25. Feng, H. & Jiang, S. & Ji, A. Investigations of the static and dynamic characteristics of waterlubricated hydrodynamic journal bearing considering turbulent, thermohydrodynamic and misaligned effects. Tribology International. 2019. Vol. 130. P. 245-260.
- 26. Zhou, H-l. & Feng, G-q. & Luo, G-h. & Ai, Y-t. & Sun, D. The dynamic characteristics of a rotor supported on ball bearings with different floating ring squeeze film dampers. Mechanism and Machine Theory. 2014. Vol. 80. P. 200-213.
- 27. Jamalabadi, M.Y.A. & Alamian, R. & Yan, W-M. & Li, L.K.B. & Leveneur, S. & Shadloo, M.S. Effects of Nanoparticle Enhanced Lubricant Films in Thermal Design of Plain Journal Bearings at High Reynolds Numbers. Symmetry. 2019. Vol. 11. No. 11. Paper No. 1353.
- 28. Ryu, K. & Yi, H. Wire Mesh Dampers for Semi-Floating Ring Bearings in Automotive Turbochargers: Measurements of Structural Stiffness and Damping Parameters. Energies. 2018. Vol. 11. No. 4. Paper No. 812.
- 29. Budzik, G. & Mazurkow, A. Modelling and Testing of Dynamic Properties of C0-45 Turbochargers. Scientific Journal of Silesian University of Technology. Series Transport. 2017. Vol. 97. P. 17-25.
- 30. Mazurkow, A. Teoria smarowania łożysk ślizgowych. Oficyna Wydawnicza Politechniki Rzeszowskiej. Rzeszów, Poland 2019. [In Polish: Lubrication theory of slidings bearings. The Publishing House Rzeszow University of Technology].
- 31. DIN 51519 Lubricants - ISO viscosity classification for industrial liquid lubricants. Deutsches Institut für Normung. [In German: German Institute for standardization].
- 32. DIN 31652, Teil 1, 2, 3. Hydrodynamische Radial – Gleitlagerimstationärem Betrieb. Deutsches Institut für Normung. [In German: Plain bearings - Hydrodynamic plain journal bearings under steady-state conditions. German Institute for standardization].
- 33. Kaniewski, W. Warunki brzegowe diatermicznego filmu smarnego. Zeszyty naukowe Politechniki Łódzkiej. 1997. No. 14. P. 1-10. [In Polish: Boundary conditions of a diathermic lubricating film. Scientific Journals of the Lodz University of Technology].
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1e4e627-ceff-4e17-a958-52d8a837ccf6