Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The drilling process with solid carbide tools with minimum quantity lubrication is under development in the automotive industry due to its high productivity and its environmental benefit. Because of the poor cooling performance when using MQL, a high amount of heat remains in the workpiece, which induces macroscopic thermal distortions and inaccurate parts. This paper presents a methodology to model the thermal distortion of a complex part having a large number of holes. The heat flux entering into the workpiece during each drilling operation is calibrated based on embedded thermocouples and on geometrical observations of the drill surface. Finally, it is shown how the model enables the optimization of a drilling sequence so as to minimize the thermal distortion and the accuracy of the machined part.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
75--89
Opis fizyczny
Bibliogr. 21 poz., tab., rys.
Twórcy
autor
- University of Lyon -ENISE, Saint-Étienne, France
autor
- University of Lyon -ENISE, Saint-Étienne, France
autor
- University of Lyon -ENISE, Saint-Étienne, France
autor
- University of Lyon -ENISE, Saint-Étienne, France
Bibliografia
- [1] CLAUDIN C., MONDELON A, RECH J, FROMENTIN G., 2010, Influence of a straight oil on friction at the tool-workmaterial interface in machining, International Journal of Machine Tools and Manufacture, 50, 681−188.
- [2] COURBON C., SAJN V., KRAMAR D., RECH J., KOSEL F., KOPAC J., 2011, Investigation of machining performance in high pressure jet assisted turning of Inconel 718: A numerical model, J. Mater. Process. Technol., 211/1, 1834−1851.
- [3] MAYR J., GEBHARDT M., MASSOW B.B., WEISKERT S., WEGENER K., 2014, Cutting fluid influence on thermal behavior of 5-axis machine tools, Procedia CIRP, 14, 395−400.
- [4] BOYER H.F., WAREMME J., BOURDIOL J.L., DELAUNAY D., 2011, A study about energy consumption and cutting fluid used to clutch case machining, Mécanique & Industries, 12, 389–393.
- [5] BRAGA D.U., DINIZ A.E., MIRAND G.W.A., COPPINI N.L., 2002, Using a minimum quantity of lubricant (MQL) and diamond coated tool in the drilling of aluminum silicon alloy, J. Mater. Process. Technol., 122, 127−138.
- [6] ITOIGAWA F., CHILDS T.H.C., NAKAMURA T., BELLUCO W., 2006, Effects and mechanisms in minimal quantity lubrication machining of an aluminum alloy, Wear, 260, 339–334.
- [7] RAHMAN M., AHAMAN A., SENTHIL KUMAR A., SALAM M.U., 2002, Experimental evaluation on the effect of minimal quantities of lubricant in milling, Int. J. of Mach. Tools & Manuf., 42, 539–547.
- [8] SREEJITH P.S., 2008, Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions, Materials Letters, 62, 276–278.
- [9] BIERMANN D., IOVKOV I., BLUM H., RADEMACHER A., TAEBU K., SUTTMEIER F.T., KLEIN N., 2012, Thermal aspects in deep hole drilling of aluminum cast alloy using twist drills, Procedia CIRP, 3, 245−250.
- [10] GANESH K.C., VASUDEVAN M., BALASUBRAMANIAN K.R., CHANDRASEKARAN N., MAHADEVAN S., VASANTHARAJA P., JAYAKUMAR T., 2014, Modeling, Prediction and Validation of Thermal Cycles, Residual Stresses and Distortion in Type 316 LN Stainless Steel Weld Joint made by TIG Welding Process, Procedia Engineering, 86, 767−774.
- [11] LINGAMANAIK S.N., CHEN B.K., 2011, Thermo-mechanical modelling of residual stresses induced by martensitic phase transformation and cooling during quenching of railway wheels, Journal of Materials Processing Technology, 211/9, 1547−1552.
- [12] JAYANTI S., REN D., ERICKSON E., USUI S., MARUSICH T., MARUSICH K., ELANGOVAN H., 2013, Predictive modeling for tool deflection and part distortion of large machined components, Procedia CIRP, 12, 37−42.
- [13] SUKAYLO V.A., KALDOS A., KRUKOVSKY G., LIERATH F., EMMER T., PIEPER H.J., KUNDRAK J., BANA V., 2004, Development and verification of a computer model for thermal distortions in hard turning, Journal of Materials Processing Technology, 155−15, 1821−1827.
- [14] KLOCKE F., LUNG D., PULS H., 2013, FEM modelling of the thermal workpiece deformation in dry turning, Procedia CIRP, 8, 240−245.
- [15] SCHINDLER S., ZIMMERMANN M., AURICH J.C., STEINMANN P., 2014, Thermo-elastic deformations of the workpiece when dry turning aluminum alloys – a finite element model to predict thermal effects in the workpiece, CIRP Journal of Manufacturing Science and Technology, 7, 233−245.
- [16] BONO M., NI J., 2006, The location of the maximum temperature on the cutting edges of a drill, International Journal of Machine Tools & Manufacture, 46, 901−907.
- [17] FLEISGNER J., PABST R., KELEMEN S., 2007, Heat flow simulation of dry machining of power train castings, CIRP Annals - Manufacturing Technology, 56/1, 117−122.
- [18] BATTAGLIA J.L., KUSIAK A., 2005, Estimation of heat fluxes during high-speed drilling, International Journal of Advanced Manufacturing Technology, 26, 750−758.
- [19] BRANDAO L.C., COELHO R.T., LAURO C.H., 2011, Contribution to dynamic characteristics of the cutting temperature in the drilling process considering one dimension heat flow, Applied Thermal Engineering, 31/17−18, 3806-3813.
- [20] DE SOUSA O.F.B., BORGES V.M., PEREIRA I.C., DE SILVA M.B., GUIMARAES G., 2012, Estimation of heat flux and temperature field during drilling process using dynamic observes based on green’s function, Applied Thermal Engineering, 48, 144−154
- [21] FAVERJON P., 2013, Etude de l’influence tribologique et thermique de la MQL en usinage d’alliage d’aluminium sur la qualité géométrique des pieces prismatiques produites sur centre d’usinage à grande vitesse, Dissertation, University of Lyon -ENISE, Saint-Étienne (in French).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1e18ab8-c756-4dd0-9a12-a93e0ad32afb