PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Rockburst prediction in kimberlite using decision tree with incomplete data

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A rockburst is a common engineering geological hazard. In order to predict rockburst potential in kimberlite at an underground diamond mine, a decision tree method was employed. Based on two fundamental premises of rockburst occurrence, σθ, σc, σt, WET are determined as indicators of rockburst, which are also partition attributes of the decision tree. 132 training samples (with 24 incomplete samples) were obtained from real rockburst cases from all over the world to build the decision tree. The decision tree based on 108 complete samples was built with an accuracy of 73% for 15 validation samples while another decision tree based on 132 samples (with 24 groups of incomplete data) shows an accuracy of 93% for validation samples. Hence, the second decision tree was employed for kimberlite burst prediction. 12 samples from lab tests and a numerical model were used as test samples. The results indicate a moderate burst liability which matches real situations at the diamond mind in question.
Rocznik
Strony
158--165
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
  • School of Mining and Petroleum Engineering, University of Alberta, Edmonton, Canada
autor
  • School of Mining and Petroleum Engineering, University of Alberta, Edmonton, Canada
autor
  • School of Mining and Petroleum Engineering, University of Alberta, Edmonton, Canada
Bibliografia
  • 1. Adoko, A. C., Gokceoglu, C., Wu, L., & Zuo, Q. J. (2013). Knowledge-based and datadriven fuzzy modeling for rockburst prediction. International Journal of Rock Mechanics and Mining Sciences, 61, 86-95. https://doi.org/10.1016/j.ijrmms.2013.02.010.
  • 2. Altindag, R. (2003). Correlation of specific energy with rock brittleness concepts on rock cutting. Journal of The Southern African Institute of Mining and Metallurgy, 103(3), 163-171.
  • 3. Baltz, R., & Hucke, A. (2008). Rockburst prevention in the German coal industry. In S. S. Peng, Ch Mark, G. Finfinger, S. Tadolini, A. W. Khair, & K. Heasley, (Eds.). Proceedings of the 27th International Conference on Ground Control in Mining, July 29-31, 2008 (pp. 46-50). Morgantown, VA: Dept. of Mining Engineering, College of Engineering and Mineral Resources, West Virginia University.
  • 4. Blake, W., & Hedley, D. G. (2003). Rockbursts: Case studies from North American hard-rock mines. Littleton, CO: Society for Mining, Metallurgy, and Exploration, Inc.
  • 5. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC Press.
  • 6. Butra, J., & Kudełko, J. (2011). Rockburst hazard evaluation and prevention methods in Polish copper mines. Cuprum, (4), 5-20.
  • 7. Cai, W., Dou, L., Si, G., Cao, A., He, J., & Liu, S. (2016). A principal component analysis/fuzzy comprehensive evaluation model for coal burst liability assessment. International Journal of Rock Mechanics and Mining Sciences, 81, 62-69. https://doi.org/10.1016/j.ijrmms.2015.09.028.
  • 8. Feng, X., & Zhao, H. (2002). Prediction of rockburst using support vector machine. Journal of Northeastern University (Natural Science), (01), 57-59 (in Chinese).
  • 9. Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61(3), 399-409. https://doi.org/10.1016/S0034-4257(97)00049-7.
  • 10. Gibowicz, S. J. (2009). Seismicity induced by mining: Recent research. Advances in Geophysics, 51, 1-53. https://doi.org/10.1016/S0065-2687(09)05106-1.
  • 11. Hall, L. O., Chawla, N., & Bowyer, K. W. (1998). Decision tree learning on very large data sets. Paper presented at 1998 IEEE International Conference on the Systems, Man, and Cybernetics.
  • 12. Jaeger, J. C., Cook, N. G., & Zimmerman, R. (2009). Fundamentals of rock mechanics (4th ed.). Malden: Blackwell Publishing.
  • 13. Kabwe, E., & Wang, Y. (2015). Review on rockburst theory and types of rock support in rockburst prone mines. Open Journal of Safety Science and Technology, 5, 104-121. https://doi.org/10.4236/ojsst.2015.54013.
  • 14. Kidybiński, A. (1981). Bursting liability indices of coal. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18(4), 295-304. https://doi. org/10.1016/0148-9062(81)91194-3.
  • 15. Korzeniowski, W., Skrzypkowski, K., & Zagórski, K. (2017). Reinforcement of underground excavation with expansion shell rock bolt equipped with deformable component. Studia Geotechnica et Mechanica, 39(1), 39-52.
  • 16. Leveille, P., Sepehri, M., & Apel, D. B. (2017). Rockbursting potential of kimberlite: A case study of Diavik diamond mine. Rock Mechanics and Rock Engineering, 50(12), 3223-3231. https://doi.org/10.1007/s00603-017-1294-z.
  • 17. Li, N., Jimenez, R., & Feng, X. (2017). The influence of Bayesian networks structure on rock burst hazard prediction with incomplete data. Procedia Engineering, 191, 206-214. https://doi.org/10.1016/j.proeng.2017.05.173.
  • 18. Li, H., Li, Z., He, R., & Yan, Y. (2014). Rock burst risk evaluation based on particle swarm optimization and BP neural network. Journal of Mining and Safety Engineering, 31(2), 203-231 (in Chinese).
  • 19. Lingga, B. A., & Apel, D. B. (2018). Shear properties of cemented rockfills. Journal of Rock Mechanics and Geotechnical Engineering, 1-10. https://doi.org/10.1016/j.jrmge.2018.03.005.
  • 20. Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (2013). Machine learning: An artificial intelligence approach. Springer Science & Business Media.
  • 21. Mingers, J. (1989). An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4(2), 227-243. https://doi.org/10.1023/A:1022604100933.
  • 22. Mitri, H. S., Hughes, R., & Zhang, Y. (2011). New rock stress factor for the stability graph method. International Journal of Rock Mechanics and Mining Sciences, 48(1), 141-145. https://doi.org/10.1016/j.ijrmms.2010.09.015.
  • 23. Ortlepp, W., & Stacey, T. (1994). Rockburst mechanisms in tunnels and shafts. Tunnelling and Underground Space Technology, 9(1), 59-65. https://doi.org/10.1016/0886-7798(94)90010-8.
  • 24. Potvin, Y., Hudyma, M., & Jewell, R. J. (2000). Rockburst and seismic activity in underground Australian mines-an introduction to a new research project. ISRM international symposium, 19-24 November, Melbourne, Australia. International Society for Rock Mechanics and Rock Engineering.
  • 25. Pu, Y., Apel, D., & Xu, H. (2018). A principal component analysis/fuzzy comprehensive evaluation for rockburst potential in kimberlite. Pure and Applied Geophysics, 175(6), 2141-2151. https://doi.org/10.1007/s00024-018-1790-4.
  • 26. Qiang, S., Yi-Shan, P., & Yi-Jie, L. (2005). The typical cases and analysis of rockburst in China. Coal Mining Technology, 10(2), 13-17 (in Chinese).
  • 27. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106. https://doi.org/10.1007/BF00116251.
  • 28. Sepehri, M. (2016). Finite element analysis model for determination of in-situ and mining induced stresses as a function of two different mining methods used at Diavik diamond mine (Doctoral dissertation). Canada: University of Alberta, Department of Civil and Environmental Engineering.
  • 29. Sepehri, M., Apel, D., & Liu, W. (2017). Stope stability assessment and effect of horizontal to vertical stress ratio on the yielding and relaxation zones around underground open stopes using empirical and finite element methods. Archives of Mining Sciences, 62(3), 653-669. https://doi.org/10.1515/amsc-2017-0047.
  • 30. Yun-hua, Z., Xin-rong, L., & Jun-ping, Z. (2008). Rockburst prediction analysis based on v- SVR algorithm. Journal of China Coal Society, 33(3), 277-282 (in Chinese).
  • 31. Zhao, T.-b., Guo, W.-y., Tan, Y.-l., Lu, C.-p, & Wang, C.-w. (2017). Case histories of rock bursts under complicated geological conditions. Bulletin of Engineering Geology and the Environment, 1-17. https://doi.org/10.1007/s10064-017-1014-7.
  • 32. Zhou, J., Li, X., & Shi, X. (2012). Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Safety Science, 50(4), 629-644. https://doi.org/10.1016/j.ssci.2011.08.065.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1ddf10c-e441-49c3-b5b4-9545bd96e4bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.