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A B S T R A C T

A rockburst is a common engineering geological hazard. In order to predict rockburst potential in kimberlite at
an underground diamond mine, a decision tree method was employed. Based on two fundamental premises of
rockburst occurrence, σ σ σ W, , ,θ c t ET are determined as indicators of rockburst, which are also partition at-
tributes of the decision tree. 132 training samples (with 24 incomplete samples) were obtained from real
rockburst cases from all over the world to build the decision tree. The decision tree based on 108 complete
samples was built with an accuracy of 73% for 15 validation samples while another decision tree based on 132
samples (with 24 groups of incomplete data) shows an accuracy of 93% for validation samples. Hence, the
second decision tree was employed for kimberlite burst prediction. 12 samples from lab tests and a numerical
model were used as test samples. The results indicate a moderate burst liability which matches real situations at
the diamond mind in question.

1. Introduction

Rockburst is a type of unstable geological hazard in overstressed
areas which is in the majority of cases induced by underground mining
and constitutes a serious threat to the safety of staff and equipment
during underground construction in both mining and civil engineering
projects. All mining countries have records concerning rockburst
events, including China (Qiang, Yi-Shan, & Yi-Jie, 2005), Germany
(Baltz & Hucke, 2008), South Africa (Gibowicz, 2009), Canada (Blake &
Hedley, 2003) and Australia (Potvin, Hudyma, & Jewell, 2000). Both
the Lubin Copper Basin (Butra & Kudełko, 2011) and the Upper Silesian
Coal Basin (USCB) in Poland have experienced severe rockbursts
(Korzeniowski, Skrzypkowski, & Zagórski, 2017). In order to prevent
rockburst disaster, short-term and long-term prediction methods are
proposed to estimate burst liability in engineering projects (Adoko,
Gokceoglu, Wu, & Zuo, 2013). However, due to the suddenness and
uncertainty of rockbursts, short-term prediction which is usually based
on the in-situ site testing methods is usually unreliable. Therefore, long-
term prediction of rockburst should be considered as a preliminary
prediction of rockburst liability and used during the engineering design
stage. Traditionally, researchers put forward several criteria for long-
term prediction, such as strain energy storage index (Kidybiński, 1981),
energy-based burst potential index (Mitri, Hughes, & Zhang, 2011),
elastic strain energy density (Jaeger, Cook, & Zimmerman, 2009), rock
brittleness coefficient (Altindag, 2003), etc. However, the occurrence of
rockburst relates to many different factors including geologic structure,

mining and excavation methods, mechanical properties of rocks, in-situ
stress and more. This makes rockburst prediction a highly nonlinear
problem (Kabwe & Wang, 2015; Pu, Apel, & Xu, 2018). Consequently,
traditional mechanism-based prediction methods are greatly limited
when it comes to engineering rockburst prediction (Feng & Zhao,
2002). Some researchers proposed mathematical and statistical
methods to solve this problem. Li, Li, He and Yan (2014) used a tra-
ditional backpropagation (BP) neural network to estimate rockburst in
the Yantai colliery. Zhou, Li and Shi (2012) employed a modified
Support Vector Model (SVM) to evaluate rockburst liability in under-
ground openings. Li, Jimenez and Feng (2017) used a Bayesian network
structure to predict long-term rockburst occurrence. Each method
mentioned above has its own advantages aimed at tackling different
types of problems. For example, a neural network is good at predicting
with a sufficient amount of data whereas SVM shows highly satisfactory
results when it is employed for binary classification problems. The
decision tree (Breiman, Friedman, Stone, & Olshen, 1984) is a popular
machine learning method, which can be used to classify test samples
after training by teaching the samples. The decision tree method has
some obvious advantages compared to other machine methods. For
example, with a generalized information gain formula, a decision tree
can be fed incomplete data and it will implement classification. This
method is widely used in indecision analysis.

In this paper, a decision tree model was constructed to evaluate
burst liability in two kimberlite pipes at a diamond mine in northern
Canada (Sepehri, 2016). The data from literature reviews of more than
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one hundred groups of historical rockburst cases was employed as
training samples in the decision tree building, whereas 12 groups of
relevant data from kimberlite pipes were used as test samples to obtain
the final prediction results.

2. Rockburst decision indicator selection

According to the mechanism of rockburst, two necessary conditions
are responsible for its occurrence: (1) the rock has the capability to
accumulate strain energy and (2) the environment is favorable to stress
concentration (Ortlepp & Stacey, 1994). Some indicators reflect the
rock mechanism property (the capability of accumulating strain en-
ergy), such as uniaxial compression stress (UCS) or uniaxial tension
stress, while some other indicators reflect the environment stress con-
dition, such as maximum tangential stress around an underground
opening (Leveille, Sepehri, & Apel, 2017; Lingga & Apel, 2018). In
terms of engineering practices, a combination of these indicators, rather
than a single indicator, is commonly adopted to comprehensively assess
burst liability. For example, in China, four indices corresponding to
UCS, elastic strain energy, bursting energy index, and the dynamic
failure duration index are considered comprehensively to determine
burst liability (Zhao, Guo, Tan, Lu, & Wang, 2017). In this paper, three
indicators including the ratio between uniaxial compressive strength
(σc) and uniaxial tensile stress (σt), the ratio between maximum shear
stress around the tunnel wall (σθ) and uniaxial tensile stress (σt), and
linear elastic energy (WET) were chosen to evaluate rockburst liability
(Leveille et al., 2017). Additionally, four ranks are introduced for de-
picting the severity of rockburst (Cai et al., 2016). There are as follows,
with increasing severity: no rockburst, moderate rockburst, strong
rockburst and violent rockburst. Numbers 1, 2, 3 and 4 represent the
different rockburst severity grades, respectively (1 – no rockburst; 2 –
moderate rockburst; 3 – strong rockburst; 4 – violent rockburst). The
grading criteria for single indicator is listed in Table 1.

Based on the rules of machine learning (Michalski, Carbonell, &
Mitchell, 2013), the training set is a set of samples used for learning,
which are to fit the parameters of the classifier. The validation set is
a set of samples used to tune the parameters of a classifier. The test set
is a set of samples used only to assess the performance of a fully spe-
cified classifier. The training set and validation set include samples with
labels while the test set includes samples without labels (labels of test
samples show our expected prediction results). In this paper, the
training set consists of 132 samples (every training sample is a real
rockburst case) which has three attributes and a corresponding label.
The validation set consists of 15 labeled samples (from real rockburst
cases) with the same three attributes. In general, the number of training
samples should be more than validation samples. The test set consists of
12 samples which are from 12 different locations at a diamond mine.

From the literature (Zhou et al., 2012), 132 historical rockburst

cases were collected from all over the world to form the training set for
this study. Of this data, 108 samples are complete which means that the
three indicators σ σ σ σ W/ , / ,c t θ t ET are all complete while the other 24
samples are incomplete which means some indicators are missing. The
decision tree model is good at dealing with discrete attributes which are
not continuous attributes. Based on the grading criteria of rockburst
intensity in Table 1, we could discretize the original data. Table 2 shows
the original data and corresponding discretization results.

3. Basic theory of a decision tree

A decision tree is defined as a classification procedure that recur-
sively partitions a data set into smaller subdivisions on the basis of a set
of tests defined at each branch (or node) in the tree (Friedl & Brodley,
1997). The root node includes test samples, while leaf nodes correspond
to decision results. Every internal root registers an attribute test. The
goal of a decision tree study is to build a decision tree with a strong
generalization ability which can deal with unclassified samples. Fig. 1 is
a sketch map of a decision tree. The labels (A, B, C) at each leaf node
refer to the class label assigned to each observation.

The key issue for decision tree building is to select the optimal
partition attribute for the root node and internal node. In general, as the
partition proceeds, it is hoped that samples in branch nodes belong to
the same category as far as possible, which means the “purity” for nodes
is higher and higher. The most typical algorithm for choosing partition
attribute is the ID3 algorithm (Quinlan, 1986), which employs in-
formation gain as a partition criterion.

It was assumed that in sample set D the proportion of the kth sample
is pk (k=1, 2, … y ). Information entropy can be defined by formula
(1)

∑= −
=

Ent D p p( ) log
k

y

k k
1

2
(1)

The smaller the value of Ent(D) the higher the purity of sample set D.
If discrete attribute a has V values {a1, a2, …, aV} and attribute a is
adopted to partition D, then V nodes are generated. Dv is the vth node
which contains all samples in set D whose values are all equal to av.
Formula (1) can be used to calculate the information entropy of Dv. Due
to different numbers of samples on different branch nodes, every node
is allocated a weight D D/v , which means a node with more samples
has greater influence. Now, information gain for the partition when
using attribute a to sample set D can be defined as formula (2). In
general, greater information gain means greater "purity gain" when
using attribute a to partition. Hence, the attribute with maximum in-
formation gain is chosen to partition every node (Mingers, 1989).

∑= −
=

Gain D a Ent D D
D

Ent D( , ) ( ) ( )
v

V v
v

1 (2)

4. The decision tree building process

4.1. Rockburst prediction based on complete data

In our case study, a decision tree model was built based on 108
completed samples. According to formula (1), y =4 (rockburst can be
divided into four categories). In 108 samples, 18, 32, 44 and 14 samples
show no, moderate, strong and violent rockbursts respectively. Hence,
the information entropy for root node D can be calculated as following:

Table 1
Grading criteria of rockburst intensity.

σ σ/θ c σ σ/c t WET

No rockburst < 0.3 > 40 >5
Moderate rockburst 0.3–0.5 26.7–40 3.5–5.0
Strong rockburst 0.5–0.7 14.5–26.7 2.0–3.5
Violent rockburst > 0.7 < 14.5 < 2.0

Y. Pu et al. Journal of Sustainable Mining 17 (2018) 158–165

159



Table 2
Original data from actual rockburst cases and discretization results (* means data missing).

Number σ σ/θ c (Attribute A) Discretization result σ σ/c t (Attribute B) Discretization result WET (Attribute C) Discretization result Rockburst ranking

1 0.53 3 15.04 3 9 1 Strong
2 0.41 2 29.73 2 7.3 1 Moderate
3 0.38 2 17.53 3 9 1 Moderate
4 0.32 2 24.11 3 9.3 1 Strong
5 0.34 2 23.97 3 6.6 1 Strong
6 0.27 1 21.69 3 5 2 Strong
7 0.44 2 26.87 2 5.5 1 Moderate
8 0.38 2 28.43 2 5 2 Strong
9 0.82 4 18.46 3 3.8 2 Strong
10 0.77 4 17.5 3 5 2 Violent
11 0.32 2 21.69 3 5 2 Strong
12 0.38 2 21.67 3 5 2 Strong
13 0.36 2 24.14 3 5 2 Strong
14 0.42 2 21.69 3 5 2 Strong
15 0.1 1 23 3 5.7 1 No
16 0.35 2 20.5 3 5 2 Strong
17 0.11 1 31.23 2 7.4 1 No
18 0.23 1 27.78 2 7.8 1 No
19 0.43 2 13.98 4 7.44 1 Strong
20 0.4 2 0.147 4 7.1 1 Strong
21 0.55 3 0.148 4 6.4 1 Strong
22 0.54 3 14.19 4 6.16 1 Violent
23 0.404 2 15 3 7.08 1 Strong
24 0.547 3 11.4 4 6.43 1 Strong
25 0.26 1 14.34 4 2.9 3 Moderate
26 0.58 3 13.18 4 6.27 1 Violent
27 0.45 2 17.53 3 5.08 1 Moderate
28 0.39 2 20.86 3 4.63 2 Strong
29 0.28 1 28.9 2 3.67 2 Moderate
30 0.2 1 36.04 2 2.29 3 No
31 0.19 1 47.93 1 1.87 4 No
32 0.66 3 13.2 4 6.83 1 Violent
33 0.22 1 33.75 2 2.89 3 Moderate
34 0.63 3 4.48 4 3.17 3 Moderate
35 0.444 2 8.976 4 4.86 2 Moderate
36 0.902 4 6.841 4 2.15 3 Moderate
37 0.564 3 9.498 4 6.11 1 Moderate
38 0.697 3 12.05 4 2.85 3 Moderate
39 0.402 2 16.04 3 3.5 3 Moderate
40 0.439 2 13.13 4 2.12 3 Moderate
41 0.58 3 24.4 3 6.31 1 Strong
42 0.13 1 6.67 4 1.39 4 No
43 0.37 2 24 3 5.1 1 Moderate
44 0.45 2 11.2 4 2.03 3 Moderate
45 0.64 3 24.4 3 6.31 1 Strong
46 0.19 1 6.67 4 1.39 4 No
47 0.48 2 24 3 5.1 1 Strong
48 0.65 3 11.2 4 2.03 3 Strong
49 0.74 4 24.4 3 6.31 1 Violent
50 0.23 1 6.67 4 1.39 4 No
51 0.61 3 24 3 5.1 1 Strong
52 1 4 11.2 4 2.03 3 Violent
53 0.283 1 9.68 4 1.92 4 No
54 0.627 3 10.7 4 3.62 2 Violent
55 0.697 3 11.7 4 2.78 3 Strong
56 0.479 2 10.1 4 1.1 4 No
57 0.34 2 23.97 3 6.6 1 Violent
58 0.11 1 27.22 2 7 1 No
59 0.23 1 25.25 3 7.6 1 Moderate
60 0.72 4 13.59 4 1.6 4 No
61 0.13 1 18.75 3 3.6 2 No
62 0.35 2 24.58 3 8 1 Moderate
63 0.27 1 24.74 3 9 1 Violent
64 0.32 2 18.96 3 5.6 1 Violent
65 0.1 1 21.43 3 4.7 2 No
66 * * 20 3 3.1 3 Strong
67 * * 26.8 2 0.85 4 Moderate
68 * * 25.7 3 0.9 4 Violent
69 * * 28.9 2 3.2 3 Violent
70 * * 28.9 2 3.2 3 Violent
71 * * 28.9 2 3.2 3 Strong
72 * * 19.2 3 3.1 3 Violent
73 * * 22 3 2 3 Strong
74 * * 20.4 3 2 3 Moderate

(continued on next page)
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Then, based on formula (2), information gains for attributes A, B, C
could be obtained respectively. For example, in the case of rockbursting
study (σ σ/θ c) could be used as attribute A. After discretization, attribute
A has four possible values 1, 2, 3 and 4. Then attribute A is used to
partition sample set D. After partition, four subsets can be obtained D1

( = 1σ
σ

θ
c

), D2 ( = 2σ
σ

θ
c

), D3 ( = 3σ
σ

θ
c

), D4 ( = 4σ
σ

θ
c

). D1 which includes 29
samples (No. 6, 15, 17, 18, 25, 29, 30, 31, 33, 42, 46, 50, 53, 58, 59, 61,
63, 65, 77, 93, 94, 95, 96, 97, 98, 99, 100, 101, 124) and where no
rockburst (No. 15, 17, 18, 30, 31, 42, 46, 50, 53, 58, 61, 65, 93, 97)
takes the proportion of 14/29; moderate rockburst (No. 25, 29, 33, 59,
77, 94, 95, 96, 124) takes the proportion of 9/29; strong rockburst (No.
6, 98, 99, 100, 101) takes the proportion of 5/29 and violent rockburst
(No. 4) takes the proportion of 1/29. Formula (1) was adopted to cal-
culate information entropies for four generated branch nodes by using
attribute A to partition root node D. It is usually agreed that pk=0,
∑ p log pk k2 =0.

Table 2 (continued)

Number σ σ/θ c (Attribute A) Discretization result σ σ/c t (Attribute B) Discretization result WET (Attribute C) Discretization result Rockburst ranking

75 0.464 2 20.4 3 2 3 Moderate
76 * * 26.8 2 0.85 4 Moderate
77 0.29 1 26.8 2 0.85 4 Moderate
78 * * 19.7 3 0.85 4 Strong
79 * * 19.7 3 2.3 3 Moderate
80 0.436 2 19.7 3 2.3 3 Moderate
81 * * 19.7 3 2.3 3 Strong
82 * * 19.7 3 2.3 3 Moderate
83 * * 19.7 3 2.3 3 Moderate
84 * * 27.3 2 3.1 3 Strong
85 * * 27.3 2 3.1 3 Strong
86 * * 24.3 3 4.6 2 Moderate
87 * * 23.6 3 4.9 2 Moderate
88 * * 21.3 3 5.3 1 Strong
89 * * 23.8 3 4.8 2 Moderate
90 * * 21.2 3 5.5 1 Strong
91 * * 28.6 2 6.8 1 Violent
92 * * 24.6 3 7.3 1 Strong
93 0.112 1 29.4 2 2.04 3 No
94 0.139 1 31.4 2 2.19 3 Moderate
95 0.151 1 28.1 2 2.11 3 Moderate
96 0.155 1 27.9 2 2.26 3 Moderate
97 0.23 1 7.52 4 1.5 4 No
98 0.23 1 10.22 4 2.5 3 Strong
99 0.23 1 11.52 4 4.6 2 Strong
100 0.22 1 14.45 4 5.2 1 Strong
101 0.29 1 9.8 4 3.7 2 Strong
102 0.44 2 20.3 3 8.1 1 Violent
103 0.62 3 8.26 4 1.8 4 Moderate
104 0.64 3 17.51 3 7.2 1 Violent
105 0.56 3 9.74 4 7.27 1 Strong
106 0.62 3 14.05 4 5.76 1 Strong
107 0.55 3 11.11 4 3.97 2 Strong
108 0.81 4 16.71 3 5 2 Moderate
109 0.56 3 24.41 3 6 1 Moderate
110 0.43 2 45.9 1 1.7 4 No
111 0.42 2 29.9 2 2.4 3 Moderate
112 0.56 3 34.3 2 1.9 4 Moderate
113 0.6 3 28.3 2 3.4 3 Strong
114 0.53 3 21 3 3.6 2 Strong
115 0.66 3 21.5 3 4.1 2 Strong
116 0.52 3 17.8 3 4.3 2 Strong
117 0.57 3 25.6 3 3.8 2 Strong
118 0.61 3 25.6 3 3.7 2 Strong
119 0.56 3 29.2 2 4.8 2 Strong
120 0.71 4 32.2 2 5.5 1 Violent
121 0.49 2 49.5 1 4.7 2 Strong
122 0.46 2 45.5 1 5.2 1 Strong
123 0.47 2 55 1 5 2 Strong
124 0.26 1 42.9 1 3.7 2 Moderate
125 0.31 2 36.1 2 3.2 3 Moderate
126 0.31 2 42.8 1 1.8 4 No
127 0.34 2 28.3 2 3 3 Moderate
128 0.49 2 49.5 1 4.7 2 Strong
129 0.61 3 25 3 3.7 2 Strong
130 0.55 3 31.3 2 4.6 2 Strong
131 0.69 3 32.1 2 5.9 1 Violent
132 0.5 2 50.9 1 5.2 1 Strong
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Based on formula (2), information gain for attribute A can be cal-
culated.

= − ∑
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Similarly, information gains for attribute B and attribute C can be
calculated.

=Gain D B( , ) 0.153

=Gain D C( , ) 0.438

It is clear that maximum information gain takes place for attribute C
(WET). Hence, attribute C was chosen as the partition attribute for root
node D. Fig. 2 shows the partition result for the root node based on
attribute C.

Afterwards, branch nodes are partitioned using the other two at-
tributes A and B. Finally, the decision tree for rockburst prediction was
built as shown in Fig. 3.

In order to verify the accuracy of this model, 15 groups of data from
literature (Yun-hua, Xin-rong, & Jun-ping, 2008) were chosen as a va-
lidation set. This data is based on real rockburst cases from engineering
projects. Each group of data includes the same three rockburst attri-
butes and a corresponding burst severity. Table 3 shows the actual
rockburst result and prediction result by the decision tree. Of the 15

groups of validation data, 11 groups were accurately predicted. The
prediction accuracy was 73%.

4.2. Rockburst prediction based on incomplete data

The decision tree built in chapter 4.1 was based on 108 complete
samples from 132 original samples. In other words, 24 incomplete
samples were not taken into consideration. In this chapter a decision
tree with 132 original samples will be built including the 24 incomplete
samples.

Fig. 1. Sketch map of a typical decision tree.

Fig. 2. The partition of root node based on WET.

c

C=1 A

A=1 B
B=2 1
B=3 1,2,4
B=4 3

A=2 B
B=1 3
B=2 2
B=3 3,4
B=4 3

A=3 B
B=2 4
B=3 3
B=4 3

A=4 B B=2 4
B=3 4

C=2 A

A=1 B
B=1 2
B=2 2
B=3 1
B=4 3

A=2 B
B=1 3
B=2 3
B=3 3
B=4 2

A=3 B
B=2 3
B=3 3
B=4 4

A=4 B B=3 2,3

C=3 A

A=1 B B=2 2
B=4 3

A=2 B
B=2 2
B=3 2
B=4 2

A=3 B B=2 3
B=4 2

A=4 B B=4 2,4

C=4 A

A=1 B
B=1 1
B=2 2
B=4 1

A=2 B B=1 1
B=4 1

A=3 B B=2 2
B=4 2

A=4 B B=4 1

Fig. 3. Decision tree based on complete data.
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The information gains for attribute A, B, C is calculated and root
node D is partitioned by the attribute which has the maximum in-
formation gain. For Attribute A, 24 group samples are missing data. The
definition of information gain (formula (2)) can be generalized as fol-
lows:

∑= × = × ⎡

⎣
⎢ − ⎤

⎦
⎥

∼ ∼ ∼

=

Gain D a ρ Gain D a ρ Ent D r Ent D( , ) ( , ) ( ) ( )͠
v

V

v v
1 (3)

From formula (1), the below was obtained:

∑= − ∼ ∼∼

=

Ent D p p( ) log
k

y

k k
1

2
(4)

∼D refers to a subset of D which has the complete data for attribute A.

=ρ
The number of samples in D
The number of samples in D

ˆ

(5)

It is assumed that attribute A has V possible values. ∼Dv refers to
a subset of ∼D , where the value of attribute a is av. And ∼Dk refers to
a subset of ∼D , which belongs to kth class (k=1, 2, … y ). We had

= ≤ ≤
∼
∼p

The number of samples in D
The number of samples in D

k y(1 )͠ k
k

(6)

= ≤ ≤
∼
∼r

The number of samples in D
The number of samples in D

v V(1 )͠v
v

(7)

Based on formulas (3)–(7), information gains for attribute A, B, C
could be calculated and then root node D could be partitioned by the
maximum information gain attribute. For attribute B and C, all samples
are complete which means the information gains for B and C are the
same as in chapter 4.1.

=Gain D A( , ) 0.258

=Gain D B( , ) 0.153

=Gain D C( , ) 0.438

Hence, attribute C was still chosen to partition root node D. Then
following the same calculation process, the decision tree based on in-
complete data was built as follows (Fig. 4).

As before, the samples in Table 2 were used as verification samples.
This decision tree, built of 15 groups verification samples, correctly
predicted 14 groups of rockburst severities. The prediction accuracy
rose to 93%, 20 percent more than the decision tree based on complete
data. This is because the first decision tree used in chapter 4.1 was
based on 108 complete pieces of data while the second was based on
132 samples. This decision tree included 108 complete samples and 24
incomplete samples, which meant that the input data of the second

decision tree contained all the information used to build the first de-
cision tree and an additional 24 samples. The more training samples
provided to the decision tree, the higher the accuracy the tree showed
(Hall, Chawla, & Bowyer, 1998). Hence, the decision tree based on
incomplete data in chapter 4.2 will be employed to predict rockburst
severity in kimberlite pipes at a diamond mine.

Table 3
The practical rockburst result and prediction result by the decision tree.

Number σ σ/θ c σ σ/c t WET Actual rockburst severity Prediction severity

1 0.32 37.31 8.3 3 3
2 0.29 35.74 7.3 4 4
3 0.22 26.56 7.3 4 4
4 0.51 14.87 10.0 2 1
5 0.38 17.55 10.0 3 3
6 0.09 21.43 5.1 4 4
7 0.27 26.38 5.2 2 2
8 0.72 3.3 18.81 2 2
9 0.32 22.70 9.2 2 2
10 0.37 23.95 5.0 2 2
11 0.43 21.89 5.0 2 2
12 0.45 26.71 5.5 3 2
13 0.34 20.12 5.5 2 3
14 0.4 25.71 5.5 2 2
15 0.81 18.38 5.5 1 2

c

C=1 B

B=1 A A=2 3

B=2 A
A=1 1
A=2 2
A=3 4
A=4 4

B=3 A
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A=3 3
A=4 2,3
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Fig. 4. Decision tree based on incomplete data.

Fig. 5. View of a typical open stope at the analyzed underground diamond
mine.
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5. Rockburst prediction in kimberlite with a decision tree

Kimberlite is a volcanic and volcanoclastic rock that sometimes
bears diamonds. The analyzed case study comes from an underground
diamond mine located in northern Canada. The statistical simulation of
the rockburst potential of kimberlite was performed on rock samples
obtained from two kimberlite pipes at this mine (Fig. 5).

To determine the rock burst potential, twelve groups of kimberlite
specimens from twelve different locations were collected from North
and South pipes for rock mechanics test. Each group contained fifteen
cylinder specimens which were divided into three sets of five specimens
each. The three sets of specimens were used to perform a UCS test,
uniaxial tensile test and hysteresis loop test. When each rock specimen
was collected, the in-situ stresses at each rock collection location were
estimated. This was done by extracting the in-situ stress data from the
FEM model built at the University of Alberta from data supplied by the
mine. This model could be used for the prediction of mining induced
stresses around underground excavations (Sepehri, Apel, & Liu, 2017).
Table 4 shows the original data and prediction results.

Based on the decision tree prediction, eight locations showed
“moderate” burst liability, while two locations showed “strong” burst
liability. The remaining two locations registered “none” and “violent”
burst liability. At least three cases of brittle and surficial failure oc-
curred at the mine and were attributed to localized high stress accu-
mulation and were classified as strain bursts. According to field ob-
servation and evaluation, these failures could be regarded as moderate
rockbursts, which verify the prediction results.

6. Conclusion

The decision tree model is introduced to predict burst liability in
kimberlite, which avoided analyzing the complex mechanism of rockburst.
132 groups of original rockburst data were used as the training sample for
the decision tree, and two decision tree models were built. One was based
on 108 complete samples while the other was based on the full range of
data (with the additional 24 incomplete samples). Decision trees are
capable of using incomplete data which can avoid data waste.

Three indicators including W, ,σ
σ

σ
σ ET

θ
c

c
t

, were chosen as partition
attributes of the decision tree model. These factors combine two fun-
damental conditions of rockburst occurrence, these being energy con-
dition and rock mechanical condition. Based on these three indicators,
a decision tree model with high generalization ability could be built and
used in different rockburst predictions in different locations.

In this case study, the constructed decision tree was used to predict
kimberlite burst liability at a diamond mine. 12 groups of original data
derived from lab tests and a numerical model were adopted as test
samples. The results showed that of the 12 samples, 8 samples have
a moderate burst liability, which is in line with practical rockburst si-
tuations at this diamond mine.
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