PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations into solar flare effects using wavelet‑based local intermittency measure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study analyzes the efficiency of local intermittency measure based on wavelet transforms in identifying solar flare effects on magnetograms. If we observe the flare-time features in geomagnetic components, most often, disturbances associated with other solar phenomena will enhance or mask the solar flare signatures. Similarly, diurnal and high-latitude geomagnetic variabilities will suppress solar flare effects on magnetograms. The measurements of amplitudes taken directly from temporal variations of weak geomagnetic components have certain limitations regarding the identification of the proper base and peak values from which the deviation due to solar flare has to be measured. In such situations, local intermittency measure based on cross-wavelet analysis can be employed which could remarkably identify the flare effects, even if the signatures are weak or masked by other disturbance effects. The present study shows that local intermittency measure based on wavelet analysis could act as an alternate quantification technique for analyzing solar flare effects on geomagnetic activity.
Czasopismo
Rocznik
Strony
687--701
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Department of Physics, University College, Trivandrum, Kerala 695034, India
autor
  • Department of Physics, University College, Trivandrum, Kerala 695034, India
Bibliografia
  • 1. Bruno R, Bavassano B, Pietropaolo E, Carbone V, Veltri P (1999) Effects of intermittency on interplanetary velocity and magnetic field fluctuations anisotropy. Geophys Res Lett 26(20):3185–3188
  • 2. Carrington RC (1859) Description of a singular appearance seen in the Sun on September 1. Mon Not R Astron Soc 20:13–15
  • 3. Consolini G, De Michelis P (2005) Local intermittency measure analysis of AE index: the directly driven and unloading component. Geophys Res Lett 32:1–4
  • 4. De Michelis P, Tozzi R (2005) A Local Intermittency Measure (LIM) approach to the detection of geomagnetic jerks. Earth Planet Sci Lett 235:261–272
  • 5. Dmitriev AV, Yeh HC (2008) Geomagnetic signatures of sudden ionospheric disturbances during extreme solar radiation events. J Atmos Sol Terr Phys 70:1971–1984
  • 6. Farge M (1992) Wavelet transforms and their applications to turbulence. Annu Rev Fluid Mech 24:395
  • 7. Farge M, Holschneider M, Colonna JF (1990) Wavelet analysis of coherent structures in two-dimensional turbulent flows in Topological Fluid Mechanics. Cambridge University Press, Cambridge
  • 8. Giménez de Castro G, Simões PJA, Raulin JP, Guimarães OM (2016) Analysis of intermittency in submillimeter radio and hard X-Ray data during the impulsive phase of a solar flare. Sol Phys 291:2003–2016
  • 9. Hodgson R (1860) On a curious appearance seen in the Sun. Mon Not R Soc 20:15–16
  • 10. Kovács P, Carbone V, Vörös Z (2001) Wavelet-based filtering of intermittent events from geomagnetic time-series. Planet Space Sci 49:1219–1231
  • 11. Liu JY, Chiu CS, Lin CH (1996) The solar flare radiation responsible for sudden frequency deviation and geomagnetic fluctuation. J Geophys Res 101:10855–10862
  • 12. Mallat S (1998) A wavelet tour of signal processing. Academic Press, New York
  • 13. Meignen S, Oberlin T, McLaughlin S (2012) Multicomponent signal denoising with synchrosqueezing. In: 2012 IEEE Statistical Signal Processing Workshop (SSP 2012), pp 660–663
  • 14. Meneveau C (1991) Analysis of turbulence in the orthonormal wavelet representation. J Fluid Mech 232:469–520
  • 15. Meyer Y (1992) Wavelets and operators. Cambridge University Press, Cambridge
  • 16. Meza A, Van Zele MA, Rovira M (2009) Solar flare effect on the geomagnetic field and ionosphere. J Atmos Sol Terr Phys 71:1322–1332
  • 17. Nagata T (1966) Solar flare effect on the geomagnetic field. J Geomagn Geoelectr 18:197–219
  • 18. Ohshio M, Fukushima N, Nagata T (1967) Solar flare effects on geomagnetic field. Rep Ionos Space Res Jpn 21:77–114
  • 19. Okeke FN, Okpala KC (2005) Geomagnetic solar flare effect in H, Y, and Z fields in the Northern Hemisphere. NJSR 1:39–99
  • 20. Rastogi RG (1962) Longitudinal variation in the equatorial electrojet. J Atmos Terr Phys 24:1031–1040
  • 21. Rastogi RG (2001) Electromagnetic induction due to solar flares at equatorial stations. J Atmos Sol Terr Phys 63:599–604
  • 22. Rastogi RG, Chandra H, Yumoto K (2013) Unique examples of solar flare effects in geomagnetic H field during partial counter electrojet along CPMN longitude sector. Earth Planets Space 65:1027–1040
  • 23. Richmond AD, Venkateswaran SV (1971) Geomagnetic crochets and associated ionospheric current systems. Radio Sci 6:139–164
  • 24. Tandberg-Hanssen E, Emslie AG (1988) The physics of solar flares. Cambridge University Press, Cambridge
  • 25. Ugonabo OJ, Okeke FN, Ugwu BI (2016) Solar flare effects (SFE) on geomagnetic fields across latitudes. Int J Phys Sci 11:112–120
  • 26. Van Sabben D (1961) Ionospheric current systems of ten IGY-solar flare effects. J Atmos Terr Phys 22:32–42
  • 27. Venugopal V, Roux SG, Foufoula-Georgiou E, Arneodo A (2006) Revisiting multifractality of high-resolution temporal rainfall using a wavelet-based formalism. Water Resour Res 42(6):W06D14
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1dc62fd-6fcc-4386-a49e-138dd7897a5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.