PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A correction method of the wall-slip effect in a cone-plate rheometer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The flow of the investigated fluid in a measuring system of a rheometer – a capillary or a slit between rotating parts – may be disturbed by anisotropic behavior of the fluid near the wall. This phenomenon, so-called wall slip, often takes place in concentrated suspensions and solutions of linear polymers and introduces experimental errors to measurement results. There are methods of correction of these errors in the case of capillary and coaxial cylinders measuring systems. In the cone and plate system the correction seems to be more difficult because the width of the gap between cone and plate changes along the radius and thus the influence of the wall slip on the shear stress varies along the radius in an unpredictable and complicated manner. This dependency of the shear stress on the distance from the axis underlies the presented method of correction of experimental results obtained in the cone and plate system. The method requires several series of measurements of shear stress vs. shear rate performed using one measuring set, at various degrees of filling the gap.
Rocznik
Strony
201–--206
Opis fizyczny
Bibliogr. 20 poz., wykr.
Twórcy
  • Warmia-Mazury University of Olsztyn,Faculty of Food Science, ul. M. Oczapowskiego 7, 10-719 Olsztyn, Poland
Bibliografia
  • 1. Ahuja A., Singh A., 2009. Slip velocity of concentrated suspensions in Couette flow. J. Rheol., 53, 1461–1485. DOI: 10.1122/1.3213090.
  • 2. Ballesta P., Petekidis G., Isa L., Poon W.C.K., Besseling R., 2008. Slip and flow of hard-sphere colloidal glasses. Phys. Rev. Lett., 101, 258301. DOI: 10.1103/PhysRevLett.101.258301.
  • 3. Barnes H.A., 1995. A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J. Non-Newtonian Fluid Mech., 56, 221–251. DOI: 10.1016/03770257(94)01282-M.
  • 4. Bécu L., Grondin P., Colin A., Manneville S., 2005. How does a concentrated emulsion flow? Yielding, local rheology, and wall slip. Colloids Surf., A, 263, 146–152. DOI: 10.1016/j.colsurfa.2004.12.033.
  • 5. Bertola V., Bertrand F., Tabuteau H., Bonn D., Coussot P., 2003. Wall slip and yielding in pasty materials. J. Rheol., 47, 1211–1226. DOI: 10.1122/1.1595098.
  • 6. Caballero-HernandezJ.,Gomez-RamirezA.,DuranJ.D.G.,Gonzalez-CaballeroF.,ZubarevA.,Lopez-LopezM.T., 2017. On the effect of wall slip on the determination of the yield stress of magnetorheological fluids. Appl. Rheol., 27, 15001. DOI: 10.3933/Applrheol-27-15001.
  • 7. Chen L., Duan Y., Zhao C., Yang L., 2009. Rheological behavior and wall slip of concentrated coal water slurry in pipe flows. Chem. Eng. Process., 48, 1241–1248. DOI: 10.1016/j.cep.2009.05.002.
  • 8. Cloitre M., Bonnecaze R.T., 2017. A review on wall slip in high solid dispersions. Rheol. Acta, 56, 283–305. DOI: 10.1007/s00397-017-1002-7.
  • 9. Franco J.M., Gallegos C., Barnes H.A., 1998. On slip effects in steady-state flow measurements of oil-in-water food emulsions. J. Food Eng., 36, 89–102. DOI: 10.1016/S0260-8774(98)00055-7.
  • 10. Gulmus S.A., Yilmazer U., 2005. Effect of volume fraction and particle size on wall slip in flow of concentrated suspensions. J. Appl. Polym. Sci., 98, 439–448. DOI: 10:1002/app.21928.
  • 11. Isa L., Besseling R., Poon W.C.K., 2007. Shear zones and wall slip in the capillary flow of concentrated colloidal suspensions. Phys. Rev. Lett., 98, 198305. DOI: 10.1103/PhysRevLett 98.198305.
  • 12. Joshi Y.M., 2001. Studies on wall-slip in entangled polymeric liquids. Appl. Rheol., 11, 277–280. DOI: 10.3933/ ApplRheol-11-277.
  • 13. Kalyon D.M., 2005. Apparent slip and viscoplasticity of concentrated suspensions. J. Rheol., 49, 621–640. DOI: 10. 1122/1.1879043.
  • 14. Kiljański T., 1989. A Method for correction of the wall-slip effect in a Couette rheometer. Rheol. Acta, 28, 61–64. DOI: 10.1007/BF01354770.
  • 15. Meeker S.P., Bonnecaze R.T., Cloitre M., 2004. Slip and flow in pastes of soft particles: Direct observation and rheology. J. Rheol., 48, 1295–1320. DOI: 10.1122/1.1795171.
  • 16. Mooney M., 1931. Explicit formulas for slip and fluidity. J. Rheol., 2, 210–222. DOI: 10.1122/1.2116364.
  • 17. Paredes J., Shahidzadeh N., Bonn D., 2015. Wall slip and fluidity in emulsion flow. Phys. Rev. E, 92, 042313. DOI: 10.1103/PhysRevE.92.042313.
  • 18. Schlegel D., 1980. Bestimmung der Schubspannungsfunktion des Blutes mit dem -Rheometer unter Berücksichtigung des Wandverhaltens. Rheol. Acta, 19, 375–380. DOI: 10.1007/BF01543150.
  • 19. Soltani F., Yilmazer U., 1998. Slip velocity and slip layer thickness in flow of concentrated suspensions. J. Appl. Polym. Sci., 70, 515–522. DOI: 10.1002/(SICI)1097-4628(19981017)70:3<515::AID-APP13>3.0.CO;2-%23.
  • 20. Yeow Y.L., Lee H.L., Melvani A.J., Mifsud G.C., 2003. A new method of processing capillary viscometry data in the presence of wall slip. J. Rheol., 47, 337–348. DOI: 10.1122/1.1538606.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1db6626-d066-45b1-b5f7-6706a9be0e36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.