PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Concentration of Nitrogen Oxides When Burning Wood Pellets of Various Origins

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper examined the impact of wood pellets of different type on the emission of nitrogen oxides (NOx) formed during the combustion process in a low-power heating boiler. The study aim was to determine the dependencies of the NOx emission levels on the chemical composition of fuel. The test was carried out using a model of a combustion chamber equipped with a dedicated burner. The analysis of the results confirmed the relationship between flue gas and the formation of NOx. The obtained results prove the possibility of reorganizing the combustion process in order to reduce the NOx emission by selecting a proper composition of raw materials when producing wood pellets.
Słowa kluczowe
Rocznik
Strony
229--233
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Institute of Thermal Energy, Faculty of Environmental and Power Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
  • Institute of Thermal Energy, Faculty of Environmental and Power Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
Bibliografia
  • 1. Boman C., Pettersson E., Westerholm R., Boström D., Nordin A. 2011. Stove Performance and Emission Characteristics in Residential Wood Log and Pellet Combustion, Part 1: Pellet Stoves. Energy Fuels, 25(1), 307-314.
  • 2. Cao Y., Pawłowski A. 2013. Biomass as an answer to sustainable energy. Opportunity versus challenge. Environ. Prot. Eng., 39(1), 153-161.
  • 3. Ciupek B. 2019. Wpływ pary wodnej dostarczanej do procesu spalania węgla kamiennego na skład chemiczny spalin. Przemysł Chemiczny, 98(11), 1768-1772.
  • 4. Ciupek B., Janeba-Bartoszewicz E., Urbaniak R. 2019. Wpływ rozdrobnienia i zwiększonej wilgotności paliw węglowych na skład chemiczny spalin. Przemysł Chemiczny, 98(8), 1283-1285.
  • 5. Ciupek B., Judt W., Urbaniak R., Kłosowiak R. 2019. The Emission of Carbon Monoxide and Nitrogen Oxides from Boilers Supplied by a Pellet under the Influence of Changes in the Air-Fuel Equivalence Ratio. Journal of Ecological Engineering, 20(10), 34-38.
  • 6. El-Sayed S., Khairy M. 2018. An Experimental Study of Combustion and Emissions of Wheat Straw Pellets in High-Temperature Air Flows. Combustion Science and Technology, 190(2), 222-251.
  • 7. Eskilsson D., Rönnbäck M., Samuelsson J., Tullin C. 2004. Optimisation of efficiency and emissions in pellet burners. Biomass and Bioenergy, 27(6), 541-546.
  • 8. Fiedler F., Persson T. 2009. Carbon monoxide emission of combined pellet and solar heating systems. Applied Energy, 86(2), 135-143.
  • 9. Filbakk T., Jirjis R., Nurmi J., Høibø O. 2011. The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass and Bioenergy, 35(8), 3342-3349.
  • 10. Hardy T., Musialik-Piotrowska A., Ciołek J., Mościcki K., Kordylewski W. 2012. Negative effects of biomass combustion and co-combustion in boilers. Environ. Prot. Eng., 38(1), 25-33.
  • 11. Holubcik M., Jandacka J., Nosek R., Barański J. 2018. Particulate Matter Production of Small Heat Source Depending on the Bark Content in Wood Pellets. Emission Control Science and Technology, 4(1), 33-39.
  • 12. Hroncová E., Ladomerský J., Valíček J., Dzurenda L. 2016. Combustion of Biomass Fuel and Residues: Emissions Production Perspective. Developments in Combustion Technology, 1.
  • 13. Joseph B., Hengsen F., Bühle L., Wachendorf M. 2018. Solid Fuel Production from Semi-Natural Grassland Biomass-Results from a CommercialScale IFBB Plant. Energies, 11(11), 3011.
  • 14. Junga R., Wzorek M., Kaszubska M. 2017. Technical and environmental performance of 10 kW understocker boiler during combustion of biomass and conventional fuels. E3S Web Conf., 19, 01009.
  • 15. Juszczak M. 2016. Comparison of CO and NOx concentrations from a 20kW boiler for periodic and constant wood pellet supply. Environment Protection Engineering, 42(3), 95-107.
  • 16. Khodaei H., Al-Abdeli Y.M., Guzzomi F., Yeoh H.G. 2015. An overview of processes and considerations in the modelling of fixed-bed biomass combustion. Energy, 88, 946-972.
  • 17. Kirsanovs V., Žandeckis A., Veidenbergs I., Blumbergs I., Gedrovičs M., Blumberga D. 2014. Experimental study on optimization of the burning process in a small scale pellet boiler due to air supply improvement. Agronomy Research, 12(2), 499-510.
  • 18. Konieczyński J., Komosiński B., Cieślik E., Konieczny T., Mathews B., Rachwał T., Rzońca G. 2017. Research into properties of dust from domestic central heating boiler fired with coal and solid biofuels. Arch. Environ. Prot., 43(2), 20-27.
  • 19. Mitchell E.J.S., Lea-Langton A.R., Jones J.M., Williams A., Layden P., Johnson R. 2016. The impact of fuel properties on the emissions from the combustion of biomass and other solid fuels in a fixed bed domestic stove. Fuel Process. Technol., 151, 117-125.
  • 20. Morán J.C., Miguez J.L., Granada E., Porteiro J., López-González L.M. 2006. Effect of Different Configurations on Small Pellet Combustion Systems. Energy Sources, Part A(12), 1135-1148.
  • 21. Müllerová J., Hloch S., Valíček J. 2010. Reducing Emissions from the Incineration of Biomass in the Boiler. Chemické listy, 104, 876–879.
  • 22. Musialik-Piotrowska A., Kordylewski W., Ciołek J., Mościcki K. 2010. Characteristics of air pollutants emitted from biomass combustion in small retort boiler. Environ. Prot. Eng., 36(2), 123-131.
  • 23. Piaskowska-Silarska M. 2014. Analiza możliwości pozyskania energii z biomasy w Polsce. Polityka Energetyczna – Energy Policy Journal, 17(4), 239-247.
  • 24. Polák M., Neuberger P. 2008. The Optimisation of Biomass Combustion in Small Boilers. Infrastructure And Ecology of Rural Areas, 6, 63-70.
  • 25. Rabczak S., Proszak-Miąsik D. 2016. Effect of the type of heat sources on carbon dioxide emissions. Journal of Ecological Engineering, 17(5), 186-191.
  • 26. Ratajczak E., Szostak A., Bidzińska G., Herbeć M. 2012. Demand for wood biomass for energy purposes in Poland by 2015. Drewno. (Pr. Nauk. Donies. Komunik.) 55(187), 51-63.
  • 27. Wiinikka H., Gebart R. 2005. The Influence of Fuel Type on Particle Emissions in Combustion of Biomass Pellets. Combustion Science and Technology, 177(4), 741-763.
  • 28. Zhang J., Smith K.R. 2007. Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions. Environmental Health Perspectives, 115(6), 848-855.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1db4d74-f826-4404-8b26-c44c09c043aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.