PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrosion resistance and chemical composition investigations of passive layer on the implants surface of Co-Cr-W-Ni alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper presents results of corrosion resistance and surface properties of Co-Cr-W-Ni alloy used in interventional cardiology. Design/methodology/approach: The tests were carried out on grinded, electropolished and passivated samples. The pitting corrosion tests were realized by recording of anodic polarization curves with the use of the potentiodynamic method. The saturated calomel electrode (SCE) of KP-113 type was applied as the reference electrode. The tests were carried out in electrolyte simulating human blood environment (artificial plasma). Crevice corrosion resistance was carried out in accordance to the ASTM F-746-81:1999 standard. Chemical composition investigations of the passive layer were realized with the use of multifunctional electron spectrometer Physical Electronics PHI 5700/660. The X-ray photoelectron spectroscopy with monochromatic radiation AlKα of 1486,6 eV was applied. Findings: Results of electrochemical tests have revealed the influence of surface preparation of the Co-Cr-W-Ni alloy on the corrosion resistance. The tests carried out in the artificial plasma for the grinded, the electropolished and the chemically passivated samples have showed that Co-Cr-W-Ni alloy is resistant to both crevice and pitting corrosion. The chemical composition analysis of the passive layer on Co-Cr-W-Ni alloy has revealed the presence of the following elements: C, O, N, Cr, Fe, Co, Ni and W. Research limitations/implications: The research was carried out on samples, not on final elements. The tests were carried out in in vitro conditions. Practical implications: The suggested surface treatment can be used for implants made of the Co-Cr-W-Ni alloy. Originality/value: The proposed surface treatment ensures the increase of the corrosion resistance in the blood environment that increases biocompatibility.
Rocznik
Strony
74--79
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • Division of Biomedical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of Biomedical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Division of Biomedical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] Z. Paszenda: Issues of metal materials used for implants in interventional cardiology. Engineering of Biomaterials, 2002, 21, pp. 3-9.
  • [2] Z. Paszenda: Forming of physico-chemical properties of coronary stents made of Cr-Ni-Mo steel applied In interventional cardiology. Printing House of the Silesian University of Technology, Gliwice 2005.
  • [3] Z. Paszenda, B. Duda, P. Wilczek: Investigations of haemocompatibility of the passive-carbon coatings used for improvement of the coronary stents’ surfaces. Engineering of Biomaterials, 2003, 26, pp. 3-11.
  • [4] Z. Paszenda, J. Tyrlik-Held: Forming the physicochemical properties of coronary stents surface. 13th Conference of the European Society of Biomechanics ESB2002, 1-4.09.2002, Wrocław, pp. 539-540.
  • [5] Z. Paszenda, J. Tyrlik-Held: Coronary stents with passive and carbon layers. Proceedings of the 17th European Conference on Biomaterials ESB2002, 11-14.09.2002, Barcelona, P89.
  • [6] J. Marciniak: Biomaterials. Printing House of the Silesian University of Technology, Gliwice 2002.
  • [7] U. Sigwart, J. Puel et al.: Intraluminal stents to prevent occlusion and restenosis after transluminal angioplasty. N. Engl J. Med 316, (1987), pp. 701-706.
  • [8] K. Christensen, R. Larsson et al.: Heparin coating of the stent graft – effects on plateles, coagulation and complement activation. Biomaterials, 22, 4, (2001), pp. 349-355.
  • [9] I. K. Stefanidis, V. A. Tolis, D. G. Sionis, L. K. Michalis: Development in Intracoronary Stents. Hellenic Journal of Cardiology – HJC, 43, 2002, pp. 63-67.
  • [10] O. Bertrand, R. Sipehia, R. Mongrain, J. Rodes, Tardif J.: Biocompatibility aspects of new stent technology. Journal of the American College of Cardiology, 32,1998, pp. 562-571.
  • [11] Z. Paszenda, J. Tyrlik-Held, Z. Nawrat, J. Żak, J. Wilczek: Usefulness of passive-carbon layer for implants applied in interventional cardiology. Journal of Materials Processing Technology, 2004, 157-158C, pp. 399-404
  • [12] Norma: ASTM G5-94:1999. Standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurements.
  • [13] Norm: ASTM F-746-81:1999. Standard test method for pitting or crevice corrosion of metallic surgical implant materials.
  • [14] W. Kajzer, M. Kaczmarek, J. Marciniak: Biomechanical analysis of stent – oesophagus system. Journal of Materials Processing Technology Vol. 162-163, 15 May 2005, pp. 196-202.
  • [15] W. Walke, W. Kajzer, M. Kaczmarek, J. Marciniak: Stress and displacement analysis in conditions of coronary angioplasty. Proceedings of the 11th International Scientific Conference „Achievements in Mechanical and Materials Engineering 2002”, Gliwice-Zakopane, 2002 pp. 595-600.
  • [16] W. Walke, Z. Paszenda, J. Marciniak: Optimization of coronary stent with the use of finite element method. Proceeding of the 12th International Scientific Conference „Achievements in Mechanical and Materials Engineering 2003”, Gliwice-Zakopane, 2003, pp. 1011-1016.
  • [17] W. Walke, Z. Paszenda, J. Filipiak: Experimental and numerical biomechanical analysis of vascular stent. Journal of Materials Processing Technology, Vol. 164-165, 15 May 2005, pp. 1263-1268.
  • [18] Z. Paszenda, J. Tyrlik-Held, J. Marciniak, A. Włodarczyk: Corrosion resistance of Cr-Ni-Mo steel intended for implants used in operative cardiology. Proceedings of the 9th International Scientific Conference „Achievements in Mechanical and Materials Engineering 2000”, Gliwice-Sopot-Gdańsk, 2000, pp. 425-428.
  • [19] Z. Paszenda, J. Tyrlik-Held: Corrosion resistance of coronary stents made of Cr-Ni-Mo steel. Proceedings of the 10thJubilee International Scientific Conference „Achievements in Mechanical and Materials Engineering 2001”, Gliwice-Kraków-Zakopane, 2001, pp. 453-460.
  • [20] Z. Paszenda, J. Tyrlik-Held: Forming the physicochemical properiteis of coronary stents surface. 13th Conference of the European Society of Biomechanics ESB2002, 1-4.09.2002, Wrocław, pp. 539-540.
  • [21] Z. Paszenda, J. Tyrlik-Held: Coronary stents with passive and carbon layers. Proceedings of the 17th European Conference on Biomaterials ESB2002, 11-14.09.2003. Barcelona, pp. 89.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1d9382c-5c33-48e8-97c0-66d8b01b75ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.