Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study is devoted to the possibility of increasing the efficiency of the working process in dual-fuel combustion chambers of gas turbine engines for FPSO vessels. For the first time, it is proposed to use the advantages of plasma‒chemical intensification of the combustion of hydrocarbon fuels in the dual-fuel combustion chambers, which can simultaneously operate on gaseous and liquid fuels. A design scheme of a combustion chamber with a plasma‒chemical element is proposed. A continuous type mathematical model of a combustion chamber with a plasma‒chemical element has been developed, which is based on the solution of a system of differential equations describing the processes of chemical reactions in a turbulent system, taking into consideration the initiating effect of the products of plasma‒chemical reactions on the processes of flame propagation. A modified six-stage kinetic scheme of hydrocarbon oxidation was used to simultaneously predict the combustion characteristics of the gaseous and liquid fuels, taking into account the decrease in the activation energy of carbon monoxide oxidation reactions when the products of the plasma‒chemical element are added. The results reveal that the addition of plasma‒chemical products significantly reduces CO emissions in the outlet section of the flame tube (from 25‒28 ppm to 3.9‒4.6 ppm), while the emission of nitrogen oxides remains practically unchanged for the studied combustion chamber. Further research directions are proposed to enhance the working process efficiency of a dual-fuel combustion chamber for gas turbine engines as part of the power plant of FSPO vessels.
Czasopismo
Rocznik
Tom
Strony
68--75
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Admiral Makarov National University of Shipbuilding, Mikolayiv, Ukrain
autor
- Admiral Makarov National University of Shipbuilding, Mikolayiv, Ukrain
autor
- Gdansk University of Technology, Poland
autor
- Jiangsu University of Science and Technology, Zhenjiang, China
Bibliografia
- 1. “Gas turbine power solutions minimize weight, footprint on FPSOs.” Accessed: Mar. 15, 2023. [Online]. Available: https://assets.siemens-energy.com/siemens/assets/api/ uuid:91faa9eb-0a1e-4f9f-91c8-5a632f89c0da/offshoremagfpsos-eprint-1811off58-61.pdf.
- 2. M. Hammer, P. E. Wahl, R. Anantharaman, D. Berstad, and K. Y. Lervåg, “CO2 capture from off-shore gas turbines using supersonic gas separation,” Energy Procedia, vol. 63, pp. 243–252, 2014, doi: https://doi.org/10.1016/j.egypro.2014.11.026.
- 3. Y. Gu and Y. Ju, “LNG-FPSO: Offshore LNG solution,” Frontiers of Energy and Power Engineering in China, vol. 2, no. 3, pp. 249–255, Jul. 2008, doi: https://doi.org/10.1007/ s11708-008-0050-1.
- 4. O. Cherednichenko, S. Serbin, and M. Dzida, “Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units,” Polish Maritime Research, vol. 26, no. 3, pp. 181–187, Sep. 2019, doi: https://doi.org/10.2478/pomr-2019-0059.
- 5. O. Cherednichenko, S. Serbin, and M. Dzida, “Investigation of the combustion processes in the gas turbine module of an FPSO operating on associated gas conversion products,” Polish Maritime Research, vol. 26, no. 4, pp. 149–156, Dec. 2019, doi: https://doi.org/10.2478/pomr-2019-0077.
- 6. S. Serbin, N. Washchilenko, M. Dzida, and J. Kowalski, “Parametric analysis of the efficiency of the combined gassteam turbine unit of a hybrid cycle for the FPSO vessel,” Polish Maritime Research, vol. 28, no. 4, pp. 122–132, Dec. 2021, doi: https://doi.org/10.2478/pomr-2021-0054.
- 7. S. Serbin, B. Diasamidze, and M. Dzida, “Investigations of the working process in a dual-fuel low-emission combustion chamber for an FPSO gas turbine engine,” Polish Maritime Research, vol. 27, no. 3, pp. 89–99, Sep. 2020, doi: https://doi. org/10.2478/pomr-2020-0050.
- 8. S. Serbin, B. Diasamidze, V. Gorbov, and J. Kowalski, “Investigations of the emission characteristics of a dual-fuel gas turbine combustion chamber operating simultaneously on liquid and gaseous fuels,” Polish Maritime Research, vol. 28, no. 2, pp. 85–95, Jun. 2021, doi: https://doi.org/10.2478/ pomr-2021-0025.
- 9. A. J. Harrison and F. J. Weinberg, “Flame stabilization by plasma jets,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Jan. 19, 1971. https:// royalsocietypublishing.org/doi/abs/10.1098/rspa.1971.0015 [Accessed: Mar. 15, 2023].
- 10. N. A. Gatsenko and S. I. Serbin, “Arc plasmatrons for burning fuel in industrial installations,” Glass and Ceramics, vol. 51(11‒12), pp. 383–386, 1994, doi: https://doi.org/10.1007/ BF00679821.
- 11. S. I. Serbin, “Features of liquid-fuel plasma-chemical gasification for diesel engines,” IEEE Trans. Plasma Sci., vol. 34, no. 6, pp. 2488–2496, Dec. 2006, doi: https://doi. org/10.1109/tps.2006.876422.
- 12. A. Yu. Starikovskii, N. B. Anikin, I. N. Kosarev, E. I. Mintoussov, S. M. Starikovskaia, and V. P. Zhukov, “Plasmaassisted combustion,” Pure and Applied Chemistry, vol. 78, no. 6, pp. 1265–1298, Jan. 2006, doi: https://doi.org/10.1351/ pac200678061265.
- 13. L. Massa and J. B. Freund, “Plasma-combustion coupling in a dielectric-barrier discharge actuated fuel jet,” Combustion and Flame, vol. 184, pp. 208–232, Oct. 2017, doi: https://doi. org/10.1016/j.combustflame.2017.06.008.
- 14. D. K. Dinh, H. S. Kang, S. Jo, D. H. Lee, and Y.-H. Song, “Partial oxidation of diesel fuel by plasma – Kinetic aspects of the reaction,” International Journal of Hydrogen Energy, vol. 42, no. 36, pp. 22756–22764, Sep. 2017, doi: https://doi. org/10.1016/j.ijhydene.2017.07.164.
- 15. S. Serbin, A. Mostipanenko, I. Matveev, and A. Tropina, “Improvement of the gas turbine plasma assisted combustor characteristics,” 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Jan. 2011, doi: https://doi.org/10.2514/6.2011-61.
- 16. S. Serbin, A. Kozlovskyi, and K. Burunsuz, “Influence of plasma-chemical products on process stability in a lowemission gas turbine combustion chamber,” International Journal of Turbo & Jet-Engines, Jan. 2021, doi: https://doi. org/10.1515/tjj-2020-0046.
- 17. S. I. Serbin, A. V. Kozlovskyi, and K. S. Burunsuz, “Investigations of nonstationary processes in low emissive gas turbine combustor with plasma assistance,” IEEE Trans. Plasma Sci., vol. 44, no. 12, pp. 2960–2964, Dec. 2016, doi: https://doi.org/10.1109/tps.2016.2607461.
- 18. I. B. Matveev, S. A. Matveeva, E. Y. Kirchuk, S. I. Serbin, and V. G. Bazarov, “Plasma fuel nozzle as a prospective way to plasma-assisted combustion,” IEEE Trans. Plasma Sci., vol. 38, no. 12, pp. 3313–3318, Dec. 2010, doi: https://doi. org/10.1109/tps.2010.2063716.
- 19. S. I. Serbin, “Modeling and experimental study of operation process in a gas turbine combustor with a plasmachemical element,” Combustion Science and Technology, vol. 139, no. 1, pp. 137–158, Oct. 1998, doi: https://doi. org/10.1080/00102209808952084.
- 20. S. I. Serbin, I. B. Matveev, and G. B. Mostipanenko, “Investigations of the working process in a ‘lean-burn’ gas turbine combustor with plasma assistance,” IEEE Trans. Plasma Sci., vol. 39, no. 12, pp. 3331–3335, Dec. 2011, doi: https://doi.org/10.1109/tps.2011.2166811.
- 21. S. M. Mousavi, R. Kamali, F. Sotoudeh, N. Karimi, and B. J. Lee, “Numerical investigation of the plasma-assisted MILD combustion of a CH4/H2 fuel blend under various working conditions,” Journal of Energy Resources Technology, vol. 143, no. 6, Oct. 2020, doi: https://doi.org/10.1115/1.4048507.
- 22. I. B. Matveev and S. I. Serbin, “Theoretical and experimental investigations of the plasma-assisted combustion and reformation system,” IEEE Trans. Plasma Sci., vol. 38, no. 12, pp. 3306–3312, Dec. 2010, doi: https://doi.org/10.1109/ TPS.2010.2063713.
- 23. I. B. Matveev and S. I. Serbin, “Modeling of the coal gasification processes in a hybrid plasma torch,” IEEE Trans. Plasma Sci., vol. 35, no. 6, pp. 1639–1647, Dec. 2007, doi: https://doi. org/10.1109/tps.2007.910134.
- 24. B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence. London: Academic Press, 1972, ISBN 0124380506.
- 25. I. B. Matveev, S. I. Serbin, V. V. Vilkul, N. A. Goncharova, “Synthesis gas afterburner based on an injector type plasmaassisted combustion system,” IEEE Trans. Plasma Sci., vol. 43, no. 12, pp. 3974‒3978, 2015, doi: https://doi.org/10.1109/ TPS.2015.2475125.
- 26. S. I. Serbin, I. B. Matveev, G. B. Mostipanenko, “Plasmaassisted reforming of natural gas for GTL: Part II – Modeling of the methane-oxygen reformer,” IEEE Trans. Plasma Sci., vol. 43, no. 12, pp. 3964‒3968, 2015, doi: https://doi.org/ 10.1109/TPS.2015.2438174.
- 27. V. Yakhot and S. A. Orszag, “Renormalization group analysis of turbulence: I. Basic theory,” Journal of Scientific Computing, vol. 1, no. 1, pp. 3‒51, 1986.
- 28. G. M. Faeth, “Structure and atomization properties of dense turbulent sprays,” Symp. (Int.) Combust., vol. 23, no. 1, pp. 1345–1352, 1991, https://doi.org/10.1016/ S0082-0784(06)80399-1.
- 29. G. Faeth, “Spray combustion models – A review,” 17th Aerospace Sciences Meeting, New Orleans, USA, 1979, https:// doi.org/10.2514/6.1979-293.
- 30. ANSYS Fluent Theory Guide. ANSYS, Inc., 2013.
- 31. A. H. Lefebvre and D. R. Ballal, Gas turbine combustion: alternative fuels and emissions. CRC Press, 2010.
- 32. K. Meredith and D. Black, “Automated global mechanism generation for use in CFD simulations,” 44th AIAA Aerospace Sciences Meeting and Exhibit, Jan. 2006, doi: https://doi. org/10.2514/6.2006-1168.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1d6dcf0-b33a-49e2-bb4c-b67e02ba2528