PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Electrical Properties for Cantilever-Based Piezoelectric Energy Harvester

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present era, the renewable sources of energy, e.g., piezoelectric materials are in great demand. They play a vital role in the field of micro-electromechanical systems, e.g., sensors and actuators. The cantilever-based piezoelectric energy harvesters are very popular because of their high performance and utilization. In this research-work, an energy harvester model based on a cantilever beam with bimorph PZT-5A, having a substrate layer of structural steel, was presented. The proposed energy scavenging system, designed in COMSOL Multiphysics, was applied to analyze the electrical output as a function of excitation frequencies, load resistances and accelerations. Analytical modeling was employed to measure the output voltage and power under pre-defined conditions of acceleration and load resistance. Experimentation was also performed to determine the relationship between independent and output parameters. Energy harvester is capable of producing the maximum power of 1.16 mW at a resonant frequency of 71 Hz under 1g acceleration, having load resistance of 12 kΩ. It was observed that acceleration and output power are directly proportional to each other. Moreover, the investigation conveys that the experimental results are in good agreement with the numerical results. The maximum error obtained between the experimental and numerical investigation was found to equal 4.3%.
Twórcy
autor
  • Department of Mechanical Engineering, University of Engineering and Technology Taxila, Pakistan
  • Department of Mechanical Engineering, University of Engineering and Technology Taxila, Pakistan
  • Department of Mechatronics Engineering, University of Engineering and Technology Taxila, Sub Campus Chakwal, Pakistan
autor
  • Department of Mechatronics Engineering, University of Engineering and Technology Taxila, Sub Campus Chakwal, Pakistan
autor
  • Department of Mechanical and Aerospace Engineering, La Sapienza University of Rome, Italy
  • Department of Mechanical Engineering, University of Engineering and Technology Taxila, Pakistan
Bibliografia
  • 1. Erturk A. and D.J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Mater. Struct., 18(2), 2009, 025009,
  • 2. Priya S., Criterion for material selection in design of bulk piezoelectric energy harvesters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57(12), 2010, 2610–2612.
  • 3. Pigache F. and C. Nadal, Multimodal electromechanical model of piezoelectric transformers by Hamilton’s principle, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56(11), 2009, 2530–2543.
  • 4. Poulin G., E. Sarraute, and F. Costa, Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system, Sensors Actuators, A Phys., 116(3), 2004, 461–471.
  • 5. Priya S. and D.J. Inman, Energy harvesting technologies, Energy Harvest. Technol., 2009, 1–517.
  • 6. Wang Z.L., Nanogenerators for self-powering nanosystems and piezotronics for smart MEMS/ NEMS, Proc. IEEE Int. Conf. Micro Electro Mech. Syst., 2011, 115–120.
  • 7. Roundy S., P.K. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Comput. Commun., 26(11), 2003, 1131–1144,
  • 8. Ottman G.K., H.F. Hofmann, A.C. Bhatt, and G.A. Lesieutre, Adaptive piezoelectric energy harvesting circuit for wireless remote power supply, IEEE Trans. Power Electron., 17(5), 2002, 669–676.
  • 9. Kim H.S., J.H. Kim, and J. Kim, A review of piezoelectric energy harvesting based on vibration, Int. J. Precis. Eng. Manuf., 12(6), 2011, 1129–1141.
  • 10. Hillyard D.C., J. Thompson, A. Kosinski, and P. Mcnabb, Development of an Energy-Harvesting Shoe, University of Tennessee, Knoxville, 2014.
  • 11. Starner T. and J.A. Paradiso, Human-Generated Power for Mobile Electronics, vol. 1990, 2004, 35–45.
  • 12. Ahn J. et al., A Bending-Type Piezoelectric Energy Harvester with a Displacement-Amplifying Mechanism for Smart Highways, vol. 73, 2018.
  • 13. Deng L., Q. Wen, S. Jiang, X. Zhao, and Y. She, On the optimization of piezoelectric vibration energy harvester, J. Intell. Mater. Syst. Struct., 26(18), 2015, 2489–2499.
  • 14. Elahi H., M. Eugeni, P. Gaudenzi, M. Gul, and R. Swati, Piezoelectric thermo electromechanical energy harvester for reconnaissance satellite structure, Microsystem Technologies, 35(2), 2018, 665–672.
  • 15. Alomari A. and A. Batra, Experimental and Modelling Study of a Piezoelectric Energy Harvester Unimorph Cantilever Arrays, Sensors & Transducers, 192(9), 2015, 37–43.
  • 16. Nechibvute A., A. Chawanda, and P. Luhanga, Enhancing power generation of piezoelectric bimorph device through geometrical optimization, Front. Energy, 8(1), 2014, 129–137.
  • 17. Sunithamani S. and P. Lakshmi, Simulation study on performance of MEMS piezoelectric energy harvester with optimized substrate to piezoelectric thickness ratio, Microsyst. Technol., 21(4), 2015, 733–738.
  • 18. Sunithamani S. and P. Lakshmi, Experimental study and analysis of unimorph piezoelectric energy harvester with different substrate thickness and different proof mass shapes, Microsyst. Technol., 23(7), 2017, 2421–2430.
  • 19. Aktakka E.E. and K. Najafi, Three-axis piezoelectric vibration energy harvester, Micro Electro Mechanical Systems, IEEE International Conference on, 2015, 1141-1144.
  • 20. Oyadiji S., S. Qi, and R. Shuttleworth, Development of Multiple Cantilevered Piezo Fibre Composite Beams Vibration Energy Harvester for Wireless Sensors, In: Kiritsis D., Emmanouilidis C., Koronios A., Mathew J. (Eds) Engineering Asset Lifecycle Management. Springer, London, 2010, 697–704.
  • 21. Kan J., K. Tang, H. Zhao, C. Shao, and G. Zhu, Performance analysis of piezoelectric bimorph generator, Front. Mech. Eng. China, 3(2), 2008, 151–157.
  • 22. Choudhary V. and S. Taruna, Equivalent Circuit Modelling for Unimorph and Bimorph Piezoelectric Energy Harvester, Adv. Informatics Comput. Res., vol. 712, 2017, 39–49.
  • 23. Xue H., H. Hu, Y. Hu, and X. Chen, An improved piezoelectric harvester available in scavenging-energy from the operating environment with either weaker or stronger vibration levels, vol. 52. 2009.
  • 24. Elahi H., M. Eugeni, P. Gaudenzi, F. Qayyum, R. Swati, and H. Khan, Response of piezoelectric materials on thermomechanical shocking and electrical shocking for aerospace applications. 2018.
  • 25. Elahi H., M. Eugeni, and P. Gaudenzi, A Review on Mechanisms for Piezoelectric-Based Energy Harvesters, vol. 11. 2018.
  • 26. Elahi H., M. Eugeni, and P. Gaudenzi, Electromechanical Degradation of Piezoelectric Patches. In: Altenbach H., Carrera E., Kulikov G. (Eds) Analysis and Modelling of Advanced Structures and Smart Systems. Advanced Structured Materials, vol 81. Springer, Singapore, 2018, 35–44.
  • 27. Kundu S. and H.B. Nemade, Modeling and Simulation of a Piezoelectric Vibration Energy Harvester. Procedia Eng., vol. 144, 2016, 568–575.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1d4f7c6-d4d4-4689-845c-1a8dd1917215
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.