PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electromagnetic AC and impulse levitations of conductive, dielectric, and magnetic ball

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an analytical solution of levitation problem for conductive, dielectric and magnetically anisotropic ball. The levitation exerts either an AC or impulse magnetic field. Both the Lorentz and material electromagnetic forces (of magnetic matter) could lift the ball in a gravitational field. The electromagnetic field distribution is derived by means of variables separation method. The total force is evaluated by Maxwell stress tensor (generalized), co-energy and Lorentz methods. Additionally, power losses are calculated by means of Joule density and the Poynting vector surface integrals. High frequency asymptotic formulas for the Lorentz force and power losses are presented. All analytical solutions derived could be useful for rapid analysis and design of levitations systems. Finally, some remarks about considered levitations are formulated.
Rocznik
Strony
art. no. e136040
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Silesian University of Technology, Electrical Engineering Faculty, ul. Akademicka 10, 44-100 Gliwice, Poland
Bibliografia
  • [1] K.J. Binns, P.J. Lawrenson, and C.W. Trowbridge, The analytical and numerical solution of electric and magnetic fields, John Wiley & Sons, 1992.
  • [2] B.S. Guru and H.R. Hiziroglu, Electromagnetic field theory fundamentals, University Press, Cambridge, 2004.
  • [3] V. Dolga and L. Dolga, “Modeling and simulation of a magnetic levitation system”, Annals of the Oradea University of Timisoara, Romania, VI (XVI) (2007).
  • [4] H. Górecki and M. Zaczyk, “Determination of optimal controllers. Comparison of two methods for electric network chain”, Bull. Pol. Ac.: Tech.66 (3), 267–273 (2018).
  • [5] E. Fromm and H. Jehn, “Electromagnetic forces and power absorption in levitation melting”, British Journal of Applied Physics, 16, 653–663 (1965).
  • [6] M. Zdanowski and R. Barlik, “Analytical and experimental determination of the parasitic parameters in high-frequency inductor”, Bull. Pol. Ac.: Tech.65 (1), 107–112 (2017).
  • [7] E.C. Okress, D.M. Wroughton, G. Comenetz, P.H. Brace, J.C.R. Kelly, “Electromagnetic levitation of solid and molten metals”, J. Appl. Phys. 23 (5), 545–552 (1952).
  • [8] D. Spałek, “Theorem about electromagnetic force surface representation in anisotropic region”, J. Tech. Phys.XLVIII (3-4), 135–145 (2007).
  • [9] W.R. Smythe, Static and dynamic electricity, McGraw–Hill Book Company, New York, 1950.
  • [10] D. Spałek, “Electromagnetic torque components in synchronous salient-pole machine”, COMPEL. Int. J. Comput. . Math. Electr. Electron. Eng. 16 (3), 129–143 (1997). [11] D. Spałek, “Two theorems about surface-integral representation of electromagnetic force and torque”, IEEE Trans. Magn. 53 (7), 1–10 (2017).
  • [12] W. He, J. Zhang, S. Yuan, A. Yang, and Ch. Qu, “Threedimensional magneto-electric vibration energy harvester based on magnetic levitation”, IEEE Magn. Lett. 8, 6104703 (2017).
  • [13] L. Ułanowicz and G. Jastrzębski, “The analysis of working liquid flow in a hydrostatic line with the use of frequency characteristics”, Bull. Pol. Ac.: Tech. 68 (4), 949–956, (2020).
  • [14] T. Kaczorek, “Stability analysis of positive linear systems by decomposition of the state matrices into symmetrical and antisymmetrical parts”, Bull. Pol. Ac.: Tech. 67 (4), 761–768 (2019).
  • [15] B.P. Mann and N.D. Sims, “Energy Harvesting from the Nonlinear Oscillations of Magnetic Levitation”, Universities of Leeds, Sheffield and York (promoting access to White Rose research papers http://eprints.whiterose.ac.uk/), 2017.
  • [16] D. Spałek, “Analytical electromagnetic field and forces calculation for linear, cylindrical and spherical electromechanical converters”, Bull. Pol. Ac.: Tech. 52 (3), 239–250 (2004).
  • [17] D. Spałek, “Levitation of Conductive and Magnetically Anisotropic Ball”, IEEE Trans. Magn. 55 (3), 1000406 (2019).
  • [18] D. Spałek, “Generalization of Maxwell Stress Tensor Method for Magnetically Anisotropic Regions”, IEEE Trans. Magn. 55 (12), 1000406 (2019).
  • [19] J.R. Wait, “A conductive sphere in a time varying magnetic field”, Geophysics, 16 (4), 666–672 (1951).
  • [20] K. Jayasekera and I. Ciric, “Benchmark Computations of the Fields, Losses, and Forces for Conducting Spheroids in the Proximity of Current-Carrying Turns”, IEEE Trans Magn. 42 (7), 1802–1811 (2006).
  • [21] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, 2015.
  • [22] D. Spałek, “Fourth boundary condition for electromagnetic field problems”, J. Tech. Phys. XLI (2), 129–144 (2000).
  • [23] D. Spałek, “Anisotropy component of electromagnetic force and torque”, Bull. Pol. Ac.: Tech. 58 (1), 107–117 (2010).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1d3bbda-f988-47e1-a4a4-a8cc5d0a4a2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.