PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of photodetectors characterization methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The review includes results of analyses and research aimed at standardizing the concepts and measurement procedures associated with photodetector parameters. Photodetectors are key components that ensure the conversion of incoming optical radiation into an electrical signal in a wide variety of sophisticated optoelectronic systems and everyday devices, such as smartwatches and systems that measure the composition of the Martian atmosphere. Semiconductor detectors are presented, and they play a major role due to their excellent optical and electrical parameters as well as physical parameters, stability, and long mean time to failure. As their performance depends on the manufacturing technology and internal architecture, different types of photodetectors are described first. The following parts of the article concern metrological aspects related to their characterization. All the basic parameters have been defined, which are useful both for their users and their developers. This allows for the verification of photodetectors’ workmanship quality, the capabilities of a given technology, and, above all, suitability for a specific application and the performance of the final optoelectronic system. Experimentally validated meteorological models and equivalent diagrams, which are necessary for the correct analysis of parameter measurements, are also presented. The current state of knowledge presented in recognized scientific papers and the results of the authors’ works are described as well.
Rocznik
Strony
art. no. e140534
Opis fizyczny
Bibliogr. 89 poz., rys., tab.
Twórcy
  • Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
Bibliografia
  • [1] M.A. Kinch, “State-of-the-Art Infrared Detector Technology,” SPIE Press, Bellingham, Washington, 2014, doi: 10.1117/3.1002 766.
  • [2] A. Rogalski, Infrared and Terahertz Detectors, 3nd edition, CRC Press, Boca Raton, 2019.
  • [3] D.E. Sidor, G.R. Savich, G.W. Wicks, “Surface Leakage Mechanism in III-V Infrared Barrier Detectors,” J. Electron. Mater., vol. 45, no. 9, pp. 4663–4667, 2016, doi: 10.1007/s11664-016-4451-3.
  • [4] J.D. Vincent, S. Hodges, J. Vampola, M. Stegall, and G. Pierce, Fundamentals of Infrared and Visible Detector Operation and Testing, 2nd edition, Wiley, New Jersey, 2016.
  • [5] W.L. Eisenman, J.D. Merriam, and R.F. Potter, “Operational characteristics of infrared photodetectors,” in Semiconductors and Semimetals, vol. 12, R.K. Willardson and A.C. Beer, Eds. Academic Press, New York, 1977, pp. 1–37.
  • [6] J. Piotrowski and A. Rogalski, High-Operating-Temperature Infrared Photodetectors, SPIE Press, Bellingham, 2007.
  • [7] F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol., vol. 9, pp. 780–793, 2014.
  • [8] W. Van Roosbroeck and W. Shockley, “Photon-radiative recombination of electrons and holes in germanium,” Phys. Rev., vol. 94, pp. 1558–1560, 1954.
  • [9] A.R. Beattie and P.T. Landsberg, “Auger effect in semiconductors,” Proc. R. Soc. Lond., vol. A 249, pp. 16–28, 1958.
  • [10] W. Shockley and W.T. Read, “Statistics of recombinations of holes and electrons,” Phys. Rev., vol. 87, pp. 835–842, 1952.
  • [11] R.N. Hall, “Electron-Hole Recombination in Germanium,” Phys. Rev., vol. 87, 387, 1952.
  • [12] J. Piotrowski andW. Gawron, “Ultimate performance of infrared photodetectors and figure of merit of detector material,” Infrared Phys. Techol., vol. 38, pp. 63–68, 1997.
  • [13] S.M. Sze, Semiconductor Devices: Physics and Technology, 3rd ed., Willey, 2012.
  • [14] S. Donati, Photodetectors. Devices, Circuits, and Applications. Prentice Hall PTR, New Jersey, 2000.
  • [15] T.J. Philips and N.T. Gordon, “Negative diffusion capacitance in Auger-suppressed HgCdTe heterostructure diodes,” J. Electron. Mater., vol. 25, no. 8, pp. 1151–1156, 1986.
  • [16] T. Markvart and L. Castaner, Practical Handbook of Photovoltaics: Fundamentals and Applications, Elsevier, Oxford, 2003.
  • [17] R.C. Jones, “Performance of detectors for visible and infrared radiation,” in Advances in Electronics, vol. 5, L. Morton, Ed. Academic Press, New York 1952, pp. 27–30.
  • [18] A. Rogalski, “Progress in focal plane array technologies,” Prog. Quantum Electron., vol. 36, pp. 342–473, 2012.
  • [19] R.D. Hudson, Infrared System Engineering, Wiley, New York, 1969.
  • [20] “Photodiode Saturation and Noise Floor,” Thorlabs. [Online]. Available: https://www.thorlabs.com/images/TabImages/Photodetector_Lab.pdf. [Accessed: 10 Dec. 2021].
  • [21] Vishay. Measurement Techniques. Document Number: 80085. 2012.
  • [22] A. Rogalski and Z. Bielecki, Detection of optical radiation. Taylor & Francis Group (in press).
  • [23] Keysight Technologies, Photodiode Test Using the Keysight B2980A Series B2981A/83A Femto/Picoammeter B2985A/87A Electrometer/High Resistance Meter. Technical Overview, 2015.
  • [24] Keysight Technologies, Impedance Measurement Handbook a guide to measurement technology and techniques, 2009.
  • [25] P.R. Thomson and T.C. Larson. “Method of measuring shunt resistance in photodiodes,” Measurement Science Conference, Ancheim, 2001.
  • [26] T. Markvart and L. Castaner, Solar Cells: Materials, Manufacture and Operation, Elsevier, Oxford, 2004.
  • [27] T.F. Refaat and D.G. Johnson, “Absolute linearity measurement of photodetectors using sinusoidal modulated radiation,” Applied Optics, vol. 51, no. 19, pp. 4420–4429, 2012.
  • [28] J.E. Martin, N.P. Fox, and P.J. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia, vol. 21, p. 147, 1985.
  • [29] R.M. Liberati, A. Del Paggio, and M. Rossi, “Photodetector Spectral Response Estimation Using Black Body Radiation,” Physics, vol. 1, pp. 360–374, 2019, doi: 10.3390/physics1030026.
  • [30] R.L. Richardson, H. Yang, and P.R. Griffiths, “Evaluation of a correction for photometric errors in FT-IR spectrometry introduced by a nonlinear detector response,” Appl. Spectrosc., vol. 52, pp. 565–571, 1998.
  • [31] R.O. Carter, N.E. Lindsay, and D.A. Beduhn, “Solution to baseline uncertainty due to MCT detector nonlinearity in FT-IR,” Appl. Spectrosc., vol. 44, pp. 1147–1151, 1990.
  • [32] K. Maham, A. Vaskuri, F. Manoocheri, and E. Ikonen, “Calibration of Near-Infrared Detectors Using a Wavelength Tunable Light Source,” Opt. Rev., vol. 27, pp. 183–189, 2020, doi: 10.1007/s10043-020-00586-9.
  • [33] T. Pohl et al., “Absolute calibration of the spectral responsivity of thermal detectors in the near-infrared (NIR) and mid-infrared (MIR) regions by using blackbody radiation,” J. Sensors Sens. Syst., vol. 10, pp. 109–119, 2021 doi: 10.5194/jsss-10-109-2021.
  • [34] T. Pohl, P. Meindl, U. Johannsen, D. Taubert, and L. Werner, “Measurement of the absolute spectral responsivity in the midinfrared based on the cryogenic electrical substitution radiometer and an optimized thermopile detector,” J. Sensors Sens. Syst., vol. 8, pp. 195–205, 2019, doi: 10.5194/jsss-8-195-2019.
  • [35] T. Varpula, H. Seppa, J.M., “SaariOptical power calibrator based on a stabilized green He–Ne laser and a cryogenic absolute radiometer,” IEEE Trans. Instrum. Meas., vol. 38, pp. 558–564, 1989.
  • [36] V.E. Anderson, N.P. Fox, and D.H. Nettleton, “Highly stable, monochromatic and tunable optical radiation source and its application to high accuracy spectrophotometry,” Appl. Opt., vol. 31, pp. 536–545, 1992.
  • [37] T.R. Gentile, J.M. Houston, and C.L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt., vol. 35, pp. 4392–4403, 1996.
  • [38] H. Rabus, F. Scholze, R. Thornagel, and G. Ulm, “Detector calibration at the PTB radiometry laboratory at BESSY,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., vol. 377, pp. 209–216, 1996.
  • [39] L.A. Faria, L.F.M. Nohra, N.A.S. Gomes, and F.D.P. Alves, “A high-performance Test-Bed Dedicated for Responsivity Measurements of Infrared Photodetectors in a Wide Band of Low Temperatures,” Int. J. Optoelectron. Eng., vol. 2, pp. 12–17, 2012 doi: 10.5923/j.ijoe.20120203.01.
  • [40] O. Gravrand, J. Wlassow, and L. Bonnefond, “A calibration method for the measurement of IR detector spectral responses using a FTIR spectrometer equipped with a DTGS reference cell,” Proc. SPIE, vol. 9154, p. 91542O, 2014
  • [41] W. Liu et al., “Mid-infrared spectral responsivity scale based on an absolute cryogenic radiometer and a tunable quantum cascade laser,” Metrologia, vol. 58, p. 025003, 2021, doi: 10.1088/1681-7575/abe02d.
  • [42] J. Zeng, G.P. Eppeldauer, L.M. Hanssen, and V.B. Podobedov, “Spectral responsivity calibrations of two types of pyroelectric radiometers using three different methods,” Proc. SPIE, vol. 8355, p. 835503, 2012.
  • [43] Ł. Ciura, A. Kolek, D. Smoczy´n, and A. Jasik, “Four-point probe resistivity noise measurements of GaSb layers,” Bull. Polish Acad. Sci. Tech. Sci., vol. 68 pp. 135–140, 2020, doi: 10.24425/bpasts.2020.131839.
  • [44] K. Jaworowicz, C. Cervera, J. B. Rodriguez, and P. Christol, “Noise Characterization of Midwave Infrared InAs / GaSb Superlattice pin Photodiode,” IEEE Photonics Technol. Lett., vol. 23, no. 4, pp. 242–244, 2011, doi: 10.1109/LPT.2010.2093877.
  • [45] J. Smulko, A. Azens, L.B. Kish, and C.G. Granqvist, “Lowfrequency current noise in electrochromic devices,” Smart Mater. Struct., vol. 17, pp. 1–5, 2008, doi: 10.1088/0964-1726/17/2/025005.
  • [46] A. Kwiatkowski, M. Gnyba, J. Smulko, and P. Wierzba, “Algorithms of chemicals detection using Raman spectra,” Metrol. Meas. Syst., vol. 17, pp. 549–560, 2010, doi: 10.2478/v10178-010-0045-1.
  • [47] C. Pace, C. Ciofi, and F. Crupi, “Very low-noise, high-accuracy programmable voltage reference,” IEEE Trans. Instrum. Meas., vol. 52, pp. 1251–1254, 2003.
  • [48] “Keysight B2961A/B2962A 6.5 Digit Low Noise Power Source,” Keysight Technologies, 2019. [Online]. Available: https://www.keysight.com/us/en/assets/7018-03526/data-sheets/5991-0663.pdf. [Accessed: 12 Dec. 2021].
  • [49] “SIM928 – Rechargeable Isolated Voltage Source. Data Sheet,” Stanford Research Systems. [Online]. Available: https://www.thinksrs.com/downloads/pdfs/manuals/SIM928m.pdf. [Accessed: 12 Dec. 2021].
  • [50] G. Scandurra, G. Giusi, and C. Ciofi, “A very low noise, high accuracy, programmable voltage source for low frequency noise measurements,” Rev. Sci. Instrum., vol. 85, pp. 1–9, 2014.
  • [51] V.E. Ivanov and E.U. Chye, “Simple programmable voltage reference for low frequency noise measurements,” J. Phys. Conf. Ser., vol. 1015, p. 052011, 2018.
  • [52] K. Achtenberg, J. Mikołajczyk, C. Ciofi, G. Scandurra, and Z. Bielecki, “Low-noise programmable voltage source,” Electronics, vol. 9, p. 1245, 2018, doi: 10.3390/electronics9081245.
  • [53] D. Talukdar, R.K. Chakraborty, S. Bose, and K.K. Bardhan, “Low noise constant current source for bias dependent noise measurements, Rev. Sci. Instrum., vol. 82, 2011, doi: 10.1063/1.3509385.
  • [54] G. Scandurra, G. Cannatà, G. Giusi, and C. Ciofi, “Programmable, very low noise current source,” Rev. Sci. Instrum., vol. 85, p. 125109, 2014. doi: 10.1063/1.4903355.
  • [55] C. Ciofi, R. Giannetti, V. Dattilo, and B. Neri, “Ultra Low-Noise Current Sources,” IEEE Trans. Instrum. Meas., vol. 47, pp. 78–81, 1998.
  • [56] “Sub-femtoamp Remote SourceMeter® SMU Instrument,” Tektronix. [Online]. Available: https://download.tek.com/datasheet/6430.pdf. [Accessed: 12 Dec. 2021].
  • [57] “200mA 2-Terminal Programmable Current Source,” Analog Devices. [Online]. Available: https:// www. analog.com/ media/en/ technical- documentation/ data- sheets/ lt3092.pdf. [Accessed: 12 Dec. 2021].
  • [58] T. Costa, M.S. Piedade, and M. Santos, “An ultra-low noise current source for magnetoresistive biosensors biasing,” 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2012, pp. 73–76. doi: 10.1109/BioCAS.2012.6418507.
  • [59] N. Jiang, “A Large Current Source with High Accuracy and Fast Settling,” Analog Devices, pp. 52–55, 2018.
  • [60] “Low-Noise Voltage Preamplifier,” Stanford Research Systems. [Online]. Available: https://www.thinksrs.com/products/sr560.htm. [Accessed: 12 Dec. 2021].
  • [61] “SR570 Low-Noise Current Preamplifier,” Stanford Research Systems. [Online]. Available: https://www.thinksrs.com/downloads/pdfs/manuals/SR570m.pdf. [Accessed: 12 Dec. 2021].
  • [62] “Model 5113 Pre-Amplifier Instruction Manual,” Ameteksi. [Online]. Available: https://www.ameteksi.com/-/media/ameteksi/download_links/documentations/5113/model_5113.pdf. [Accessed: 12 Dec. 2021].
  • [63] “Model 5182 Current Preamplifier,” Ameteksi. [Online]. Available: https://www.ameteksi.com/-/media/ameteksi/download_links/documentations/supportcenter/signalrecovery/instruction_manuals/222514-a-mnl-d.pdf. [Accessed: 12 Dec. 2021].
  • [64] “Small Instrumentation Modules SIM910 and SIM911 – Low noise voltage preamplifiers,” Stanford Research Systems. [Online]. Available: https://www.thinksrs.com/downloads/pdfs/catalog/SIM910911c.pdf. [Accessed: 12 Dec. 2021].
  • [65] “DLPCA-200 Variable Gain Low Noise Current Amplifier Datasheet,” Femto. [Online]. Available: https://www.femto.de/images/pdf-dokumente/de-dlpca-200.pdf. [Accessed: 12 Dec. 2021].
  • [66] F.A. Levinzon, “Ultra-low-noise high-input impedance amplifier for low-frequency measurement applications,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 55, pp. 1815–1822, 2008, doi: 10.1109/TCSI.2008.918213.
  • [67] G. Scandurra, G. Gusi, and C. Ciofi, “Single JFET Front-End Amplifier for Low Frequency Noise Measurements with Cross Correlation-Based Gain Calibration,” Electronics, vol. 8, p. 1197, 2019, doi: 10.3390/electronics8101197.
  • [68] K. Achtenberg, J. Mikołajczyk, and Z. Bielecki, “FET input voltage amplifier for low frequency noise measurements,” Metrol. Meas. Syst., vol. 27 pp. 531–540, 2020, doi: 10.24425/mms.2020.132785.
  • [69] K. Achtenberg, J. Mikołajczyk, C. Ciofi, G. Scandurra, K. Michalczewski, and Z. Bielecki, “Low-frequency noise measurements of IR photodetectors with voltage cross correlation system,” Measurement, vol. 183, p. 109867, 2021, doi: 10.1016/j.measurement.2021.109867.
  • [70] L. Ciura, A. Kolek, K. Michalczewski, K. Hackiewicz, and P. Martyniuk, “1/f Noise in InAs/InAsSb Superlattice Photoconductors,” IEEE Trans. Electron Devices, vol. 67, pp. 3205–3210, 2020, doi: 10.1109/TED.2020.2998449.
  • [71] R. Ćwirko, J. Ćwirko, and Z. Bielecki, “Measurement system testing the optical radiation detectors in a broad temperature range,” Metrol. Meas. Syst., vol. 16, pp. 491–500, 2009.
  • [72] Ł. Ciura, A. Kolek, W. Gawron, A. Kowalewski, and D. Stanaszek, “Measurements of low frequency noise of infrared photodetectors with transimpedance detection system,” Metrol. Meas. Syst., vol. 21 pp. 461–472, 2014, doi: 10.2478/mms-2014-0039.
  • [73] N. Dyakonova, S.A. Karandashev, M.E. Levinshtein, B.A. Matveev, and M.A. Remennyi, “Low frequency noise in reverse biased P- InAsSbP / n- InAs infrared photodiodes,” Semicond. Sci. Technol., vol. 34, 2019.
  • [74] K. Jaworowicz, C. Cervera, J. B. Rodriguez, and P. Christol, “Noise Characterization of Midwave Infrared InAs / GaSb Superlattice pin Photodiode,” IEEE Photon. Technol. Lett., vol. 23, pp. 242–244, 2011, doi: 10.1109/LPT.2010.2093877.
  • [75] R. Taalat, P. Christol, and J. Rodriguez, “Dark Current and Noise Measurements of an InAs/GaSb Superlattice Photodiode Operating in the Midwave Infrared Domain,” J. Electron. Mater., vol. 41, pp. 2714–2718, 2012, doi: 10.1007/s11664-012-2035-4.
  • [76] D. Ramos et al., “1/f Noise and Dark Current Correlation in Midwave InAs/GaSb Type-II Superlattice IR Detectors,” Phys. Status Solidi A-Appl. Mat., vol. 218, p. 2000557, 2021, doi: 10.1002/ pssa.202000557.
  • [77] Y. An, H. Rao, G. Bosman, and A. Ural, “Characterization of carbon nanotube film-silicon Schottky barrier photodetectors,” J. Vac. Sci. Technol. B, vol. 30, p. 021805, 2012, doi: 10.1116/1.3690645.
  • [78] A. De Iacovo, C. Venettacci, L. Colace, L. Scopa, and S. Foglia, “Noise performance of PbS colloidal quantum dot photodetectors,” Appl. Phys. Lett., vol. 111, p. 211104, 2017, doi: 10.1063/1.5005805.
  • [79] P. Kostov, W. Gaberl, M. Hofbauer, and H. Zimmermann, “Low Frequency Noise in CMOS PNP PIN Phototransistors,” 2013 22nd International Conference on Noise and Fluctuations (ICNF), 2013, pp. 1–4, doi: 10.1109/ICNF.2013.6578993.
  • [80] P.D. Hale and D.L. Franzen, “Accurate characterization of highspeed photodetectors,” Proc. SPIE, vol. 2022, Photodetectors and Power Meters, pp. 218–227, 1993, doi: 10.1117/12.158578.
  • [81] X.Wu, J. Man, L. Xie, J. Liu, Y. Liu, and N. Zhu, “A new method for measuring the frequency response of broadband optoelectronic devices,” IEEE Photonics J., vol. 4, no. 5, pp. 1679–1685, 2012.
  • [82] K.M. Abramski, “Frequency response of photodetector measurements employing heterodyne and interferometric techniques of detection,” Opt. Appl., vol. 13, no. 3, pp. 223–229, 1983.
  • [83] T.S. Clement, P.D. Hale, K.C. Coakley, and C.M. Wang, “Timedomain measurement of the frequency response of high-speed photoreceivers to 50 GHz,” in Tech. Dig., Symp. on Optical Fiber Meas., 2000, pp. 121–124.
  • [84] S. Kawanishi, A. Takada, and M. Saruwatari, “Wideband frequency-response measurement of optical receivers using optical heterodyne detection,” J. Lightwave Technol., vol. 7, pp. 92–98, 1989.
  • [85] P.D. Hale, C.M. Wang, R. Park, and W.Y. Lau, “A transfer standard for measuring photoreceiver frequency response,” J. Lightwave Technol., vol. 14, no. 11, pp. 2457–2466, 1996, doi: 10.1109/50.548142.
  • [86] H. Wang et al., “Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors.” Optics Communications, vol. 373, pp. 110–113, 2016.
  • [87] “Measure detector response using shot-noise,” Koheron. [Online]. Available: https://www.koheron.com/blog/2017/01/05/detector-response-shot-noise. [Accessed: 15 Dec. 2021].
  • [88] E. Eichen, J. Schlafer, W. Rideout, and J. McCabe, “Widebandwidth receiver photodetector frequency response measurements using amplified spontaneous emission from a semiconductor optical amplifier,” J. Lightwave Technol., vol. 8, pp. 912–916, 1990.
  • [89] V. Mackowiak, J. Peupelman, Y. Ma, and A. Gorges, “NEPNoise equivalent power,” Thorlabs. [Online]. Available: https://www.thorlabs.com/images/TabImages/Noise_Equivalent_Power_White_Paper.pdf. [Accessed: 15 Dec. 2021].
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1d139fb-5e7c-4ab5-a170-796fd9164a68
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.