Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Objective: Breast cancer remains a leading cause of mortality among women worldwide. Early detection and accurate prognosis are crucial for improving patient outcomes. This study presents a novel approach that integrates feature elimination techniques with machine learning to enhance the accuracy of breast cancer prognosis. The approach addresses class imbalance in the dataset to improve sensitivity, particularly in minimizing false negatives. Additionally, it emphasizes the use of machine learning algorithms, which are considered more transparent and computationally efficient compared to deep learning methods. Method: The Wisconsin Breast Cancer (WBC) dataset was used to develop an interpretable machine learning model. Recursive Feature Elimination (RFE) identified key features, while Principal Component Analysis (PCA) reduced dimensionality. The optimized feature set was trained using XGBoost. To address class imbalance, class weighting and decision threshold adjustments were applied to improve sensitivity and minimize false negatives. Results: The model achieved high performance: accuracy of 99.12%, precision of 100%, recall of 97.69%, and an F1 score of 98.9%. Feature selection and class imbalance handling enhanced sensitivity and computational efficiency. The model's interpretable results highlight its suitability for clinical applications. Conclusions: This study presents an interpretable machine learning model integrating RFE, PCA, and XGBoost to enhance breast cancer prognosis. High accuracy and sensitivity, coupled with explainability, make it a promising tool for clinical decisionmaking in early detection and treatment planning.
Czasopismo
Rocznik
Tom
Strony
37--48
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Department of IT, MLV Textile & Engineering College, Bhilwara 311001, Rajasthan, India
autor
- Department of Computer Science and Engineering, Swami Keshvanand Institute of Technology, Management and Gramothan, Jaipur, Rajasthan, India
Bibliografia
- 1. De Martel C, Georges D, Bray F, Ferlay J, Clifford GM. (2020) Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob Health. 2020;8(2):e180-90.
- 2. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Bray F. Global cancer observatory: cancer today. Lyon: International Agency for Research on Cancer, Lyon; 2018.
- 3. Simpson PT, Gale T, Fulford LG, Reis-Filho JS, Lakhani SR. The diagnosis and management of pre-invasive breast disease: pathology of atypical lobular hyperplasia and lobular carcinoma in situ. BCR. 2003;5(5):1-5.
- 4. American Cancer Society medical and editorial content team. American Cancer Society. cancer.org |1.800.227.2345 [Internet]; 2021 [cited 2021 March 2]. Available from: https://www. cancer.org/cancer/acs-medical-content-and-news-staff.html.
- 5. Saba T. Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges. J. Infect. Public Health. 2020 Sep;13(9):1274-89.
- 6. Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2006;2:117693510600200030.
- 7. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. CSBJ 2015;13:8-17.
- 8. Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett. 2020;471:61-71.
- 9. Britt KL, Cuzick J, Phillips KA. Key steps for effective breast cancer prevention. Nat. Rev. Cancer 2020;20(8):417-36.
- 10. Dua D, Graff C. UCI Machine Learning Repository [Internet]. Irvine, CA: University of California, School of Information and Computer Science; 2019 [cited 2019]. Available from: http://archive.ics.uci.edu/ml.
- 11. Omondiagbe DA, Veeramani S, Sidhu AS. Machine Learning Classification Techniques for Breast Cancer Diagnosis. IOP Conference Series: Materials Science and Engineering. 2019 Jun 7;495:012033.
- 12. Desai M, Shah M. An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and convolutional neural network (CNN). Clinical eHealth 2021;4:1-11.
- 13. Nassif AB, Talib MA, Nasir Q, Afadar Y, Elgendy O. Breast cancer detection using artificial intelligence techniques: A systematic literature review. Artif Intell Med. 2022 May;127:102276.
- 14. Sun W, Tseng TLB, Zheng B, Qian W. A preliminary study on breast cancer risk analysis using deep neural network. In: Tingberg A, Lång K, Timberg P, editors. International Workshop on Breast Imaging. New York: Springer; 2016. p. 385-91.
- 15. Zemouri R, Omri N, Morello B, Devalland C, Arnould L, Zerhouni N, et al. Constructive Deep Neural Network for Breast Cancer Diagnosis. IFAC-PapersOnLine. 2018 Jan 1;51(27):98-103.
- 16. Zhang Y, Chen J-H, Lin Y, Chan S, Zhou J, Chow D, et al. Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers. Eur. Radiol. 2021;31(4):2559-67.
- 17. Freeman K, Geppert J, Stinton C, Todkill D, Johnson S, Clarke A, et al. Use of artificial intelligence for image analysis in breast cancer screening programs: systematic review of test accuracy. BMJ 2021 Sep 1:374:n1872.
- 18. Murtaza G, Shuib L, Mujtaba G, Raza G. Breast Cancer Multi-classification through Deep Neural Network and Hierarchical Classification Approach. Multim. Tools Appl. 2019 Apr 2;79(21-22):15481-511.
- 19. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE. A survey of deep neural network architectures and their applications. Neurocomputing. 2017 Apr;234:11-26.
- 20. Osareh A, Shadgar B, editors. Machine learning techniques to diagnose breast cancer. 5th International Symposium on Health Informatics and Bioinformatics; 2010 April 20-22; Antalya, Turkey. New Jersey: IEEE; 2010. p. 114-20.
- 21. Agarap FM, editor. On breast cancer detection: An application of machine learning algorithms on the Wisconsin diagnostic dataset. 2nd International Conference on Machine Learning and Soft Computing; 2018 Feb 2-4; Phu Quoc Island, Vietnam; 2018. p. 5-9.
- 22. Li Y, Chen Z. Performance evaluation of machine learning methods for breast cancer prediction. Comput. Appl. Math. 2018;7(4):212-6.
- 23. Bataineh A. A comparative analysis of nonlinear machine learning algorithms for breast cancer detection. IJMLC 2019;9(3);248-54.
- 24. Gupta P, Garg S. Breast cancer prediction using varying parameters of machine learning models. Procedia Comput. Sci. 2020;171:593-601.
- 25. Khandezamin Z, Naderan M, Rashti MJ. Detection and classification of breast cancer using logistic regression feature selection and GMDH classifier. J. Biomed. Inform. 2020;111:103591.
- 26. Islam MdM, Haque MdR, Iqbal H, Hasan MdM, Hasan M, Kabir MN. Breast Cancer Prediction: A Comparative Study Using Machine Learning Techniques. SN Comput. Sci. 2020 Sep;1(5):1-14.
- 27. Wolberg W, Mangasarian O, Street N, Street W. (1995) Breast Cancer Wisconsin (Diagnostic), UCI Machine Learning Repository [Internet]. Available from: https://doi.org/10.24432/C5DW2B.
- 28. Chen T, Guestrin C, editors. Xgboost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016. New York: ACM; 2016.
- 29. Jolliffe IT. Principal Component Analysis. 2nd ed. New York: Springer Series in Statistics; 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1ce435d-2b28-4507-871c-411fc0a329ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.