PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deep learning application on object tracking

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Aplikacja do głębokiego uczenia się do śledzenia obiektów
Języki publikacji
EN
Abstrakty
EN
The challenge of correctly identifying the target in the first frame of continuous sequences and tracking it in succeeding frames is frequently solved by visual tracking. The development of deep neural networks has aided in significant advancement over the past few decades. However, they are still considerable challenges in developing reliable trackers in challenging situations, essentially due to complicated backgrounds, partial or complete occlusion, illumination change, blur and similar objects. In this paper, we study correlation filter and deep learning-based approaches. We have compared the following trackers ECO, SaimRPN, ATOM, DiMP, TRASFUST and TREG. These trackers have been developed based on deep neural networks and are very recent. Performances of trackers have been evaluated on OTB-100, UAV123, VOT 2019, GOT-10k and LaSOT dataset. Results prove the effectiveness of deep neural networks to cope up with object tracking in videos.
PL
Wyzwanie polegające na prawidłowej identyfikacji celu w pierwszej klatce ciągłych sekwencji i śledzeniu go w kolejnych klatkach jest często rozwiązywane przez śledzenie wizualne. Rozwój głębokich sieci neuronowych przyczynił się do znacznego postępu w ciągu ostatnich kilku dekad. Jednak nadal stanowią one poważne wyzwanie w opracowywaniu niezawodnych trackerów w trudnych sytuacjach, głównie ze względu na skomplikowane tła, częściowe lub całkowite przesłonięcie, zmiany oświetlenia, rozmycie i podobne obiekty. W tym artykule badamy filtr korelacji i podejście oparte na głębokim uczeniu się. Porównaliśmy następujące trackery ECO, SaimRPN, ATOM, DiMP, TRASFUST i TREG. Te trackery zostały opracowane w oparciu o głębokie sieci neuronowe i są bardzo nowe. Wydajność trackerów została oceniona na zestawie danych OTB-100, UAV123, VOT 2019, GOT-10k i LaSOT. Wyniki dowodzą skuteczności głębokich sieci neuronowych w radzeniu sobie ze śledzeniem obiektów w filmach.
Rocznik
Strony
145--149
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Department of Computer Sciences, LIMPAF Laboratory, University of Bouira, Algeria
autor
  • Electrical Engineering Departement Bouira University, Algeria
Bibliografia
  • [1] Waisi, N., Abdullah, N. & Ghazal, M. The automatic detection of underage troopers from live-videos based on deep learning. Przegla˛d Elektrotechniczny. 97 (2021).
  • [2] Fernando, T., Denman, S., Sridharan, S. & Fookes, C. Tracking by prediction: A deep generative model for mutli-person local isation and tracking. 2018 IEEE Winter Conference On Applications Of Computer Vision (WACV). pp. 1122-1132 (2018).
  • [3] Bolme, D., Beveridge, J., Draper, B. & Lui, Y. Visual object tracking using adaptive correlation filters. 2010 IEEE Computer Society Conference On Computer Vision And Pattern Recognition. pp. 2544-2550 (2010).
  • [4] Danelljan, M., Bhat, G., Shahbaz Khan, F. & Felsberg, M. Eco: Efficient convolution operators for tracking. Proceedings Of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 6638-6646 (2017).
  • [5] Li, B., Yan, J., Wu, W., Zhu, Z. & Hu, X. High performance visual tracking with siamese region proposal network. Proceedings Of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 8971-8980 (2018).
  • [6] Bertinetto, L., Valmadre, J., Henriques, J., Vedaldi, A. & Torr, P. Fully-convolutional siamese networks for object tracking. Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 And 15-16, 2016, Proceedings, Part II 14. pp. 850-865 (2016).
  • [7] Danelljan, M., Bhat, G., Khan, F. & Felsberg, M. Atom: Accurate tracking by overlap maximization. Proceedings Of The IEEE/CVF Conference On Computer Vision And Pattern Recognition. pp. 4660-4669 (2019).
  • [8] Bhat, G., Danelljan, M., Gool, L. & Timofte, R. Learning discriminative model prediction for tracking. Proceedings Of The IEEE/CVF International Conference On Computer Vision. pp. 6182-6191 (2019).
  • [9] Dunnhofer, M., Martinel, N. & Micheloni, C. Tracking-by-trackers with a distilled and reinforced model. Proceedings Of The Asian Conference On Computer Vision. (2020).
  • [10] Cui, Y., Jiang, C., Wang, L. & Wu, G. Target transformed regression for accurate tracking. ArXiv Preprint ArXiv:2104.00403. (2021).
  • [11] Wu, Y., Lim, J. & Yang, M. Object Tracking Benchmark. IEEE Transactions On Pattern Analysis And Machine Intelligence. 37, 1834-1848 (2015).
  • [12] Mueller, M., Smith, N. & Ghanem, B. A benchmark and simulator for uav tracking. Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14. pp. 445-461 (2016).
  • [13] Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Pflugfelder, R., Kamarainen, J., Cehovin Zajc, L., Drbohlav, O., Lukezic, A., Berg, A. & Others The seventh visual object tracking vot2019 challenge results. Proceedings Of The IEEE/CVF Inernational Conference On Computer Vision Workshops. pp. 0-0 (2019).
  • [14] Huang, L., Zhao, X. & Huang, K. Got-10k: A large high diversity benchmark for generic object tracking in the wild. IEEE Transactions On Pattern Analysis And Machine Intelligence. 43, 1562-1577 (2019).
  • [15] Fan, H., Lin, L., Yang, F., Chu, P., Deng, G., Yu, S., Bai, H., Xu, Y., Liao, C. & Ling, H. Lasot: A high-quality benchmark for large-scale single object tracking. Proceedings Of The IEEE/CVF Conference On Computer Vision And Pattern Recognition. pp. 5374-5383 (2019).
  • [16] RossD, L., LimJ, L. & Others Incremental learning for robustvisual tracking. International Journal of ComputerVision. 77, 125r141 (2008).
  • [17] Kalal, Z., Mikolajczyk, K. & Matas, J. Tracking-learning detection. IEEE Transactions On Pattern Analysis And Machine Intelligence. 34, 1409-1422 (2011).
  • [18] Avidan, S. Ensemble tracking. IEEE Transactions On Pattern Analysis And Machine Intelligence. 29, 261-271 (2007).
  • [19] Avidan, S. Support vector tracking. IEEE Transactions On Pattern Analysis And Machine Intelligence. 26, 1064-1072 (2004).
  • [20] Saffari, A., Leistner, C., Santner, J., Godec, M. & Bischof, H. On-line random forests. 2009 Ieee 12th International Conference On Computer Vision Workshops, Iccv Workshops. pp. 1393-1400 (2009).
  • [21] Zhang, K., Zhang, L. & Yang, M. Fast compressive tracking. IEEE Transactions On Pattern Analysis And Machine Intelligence. 36, 2002-2015 (2014).
  • [22] Krizhevsky, A., Sutskever, I. & Hinton, G. Imagenet classification with deep convolutional neural networks. Communications Of The ACM. 60, 84-90 (2017).
  • [23] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. & Rabinovich, A. Going deeper with convolutions. Proceedings Of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 1-9 (2015).
  • [24] Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. International Conference On Machine Learning. pp. 448-456 (2015).
  • [25] Girshick, R. Fast r-cnn. Proceedings Of The IEEE International Conference On Computer Vision. pp. 1440-1448 (2015).
  • [26] Danelljan, M., Robinson, A., Shahbaz Khan, F. & Felsberg, M. Beyond correlation filters: Learning continuous convolution operators for visual tracking. Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part V 14. pp. 472-488 (2016).
  • [27] Real, E., Shlens, J., Mazzocchi, S., Pan, X. & Vanhoucke, V. Youtube-boundingboxes: A large high-precision humanannotated data set for object detection in video. Proceedings Of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 5296-5305 (2017)
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1bb8696-6514-4d5d-997f-a3d20c5c88fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.