Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hands-on MPC tuning for industrial applications

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper proposes a practical tuning of closed loops with model based predictive control. The data assumed to be known from the process is the result of the bump test commonly applied in industry and known in engineering as step response data. A simplified context is assumed such that no prior know-how is required from the plant operator. The relevance of this assumption is very realistic in the context of first time users, both for industrial operators and as educational competence of first hand student training. A first order plus dead time is approximated and the controller parameters immediately follow by heuristic rules. Analysis has been performed in simulation on representative dynamics with guidelines for the various types of processes. Three single-input-single-output experimental setups have been used with no expert users available in different locations – both educational and industrial – these setups are representative for practical cases: a variable time delay dominant system, a non-minimum phase system and an open loop unstable system. Furthermore, in a multivariable control context, a train of separation columns has been tested for control in simulation, followed by experimental tests on a laboratory system with similar dynamics, i.e. a sextuple coupled water tank system. The results indicate the proposed methodology is suitable for hands-on tuning of predictive control loops with some limitations on performance and multivariable process control.
Opis fizyczny
Bibliogr. 68 poz., rys.
  • Ghent University, Department of Electrical energy, Metals, Mechanical Constructions and Systems, Research group on Dynamical Systems and Control, Tech Lane Science Park 125, Ghent B9052, Belgium
  • EEDT core lab on Decision and Control, member of Flanders Make consortium, Tech Lane Science Park 131, Ghent 9052, Belgium
  • Technical University of Cluj Napoca, Department of Automation, Memorandumului Street no 28, Cluj, Romania
  • Ghent University, Department of Electrical energy, Metals, Mechanical Constructions and Systems, Research group on Dynamical Systems and Control, Tech Lane Science Park 125, Ghent B9052, Belgium
  • EEDT core lab on Decision and Control, member of Flanders Make consortium, Tech Lane Science Park 131, Ghent 9052, Belgium
  • [1] T. Samad, A survey on industry impact and challenges thereof, IEEE Ctrl Syst Mag 37(1), 17–18 (2017)
  • [2] A. Maxim, D. Copot, C. Copot, and C. Ionescu, The 5Ws for control as part of industry 4.0: why, what, where, who, and when – a PID and MPC control perspective, Inventions 4(1) (2019). DOI: 10.3390/inventions4010010.
  • [3] M. Forbes, R. Patwardhan, H. Hamadah, and R. Gopaluni, Model predictive control in industry: challenges and opportunities, in: IFAC papers Online 48‒8, IFAC, 2015, 531–538.
  • [4] A. Carvalho, S. Lefevre, G. Schildbach, J. Kong, and F. Borrelli, Automated driving: the role of forecasts and uncertainty – a control perspective, European Journal of Control 24, 14‒32 (2015).
  • [5] G. Serale, M. Fiorentini, A. Capozzoli, D. Bernardini, and A. Be-mporad, Model predictive control for enhancing building and HVAC system energy efficiency: problem formulation, applications and opportunities, Energies 11(631) (2018).DOI: 10.3390/en11030631.
  • [6] R. Vilanova and A. Visioli, PID control in the third millennium, Springer Advances in Industrial Control, London, 2012.
  • [7] A. Visioli, Practical PID control, Advances in Industrial Control, Springer Verlag, London, 2006.
  • [8] C.-C. Yu, Autotuning of PID controllers: a relay feedback approach, Springer Science & Business Media, London, 2006.
  • [9] K. Soltesz and A. Cervin, When is pid a good choice?, Proc of the IFAC – Conf on Advances in PID Control PID18, Ghent, Belgium, 250–255, May 9‒11 (2018).
  • [10] K. Åström and T. Hägglund, The future of PID control, Control Engineering Practice 9(11), 1163–1175 (2001).
  • [11] M. Bauer, A. Horch, L. Xie, M. Jelali, and N. Thornhill, The current state of control loop performance monitoring – a survey of application in industry, Journal of Process Control 38, 1–10 (2016). DOI:10.1016/j.jprocont.2015.11.002.
  • [12] A. Leva and M. Maggio, Extending ideal PID tuning rules to the ISA real structure: two procedures and a benchmark campaign, Ind Eng Chem Res 50, 9657–9666 (2011).
  • [13] G.E.A. Astolfi, Special issue: The path of control, European Journal of Control 19, 339–435 (2013).
  • [14] S. Qin and T. Badgwell, A survey of industrial model predictive co-trol technology, Control Engineering Practice 11, 733–764 (2003).
  • [15] T. Badgwell and S. Qin, Model-predictive control in practice, Encyclopedia of Systems and Control Springer Verlag London. doi:10.1007/978‒1‒4471‒5102‒9‒8‒1.
  • [16] M. Morari and J. Lee, Model predictive control: past, present and future, Computers and Chemical Engineering 23(4–5), 667–682 (1999).
  • [17] C. Garcia, D. Prett, and M. Morari, Model predictive control: theory and practice – a survey, Automatica 25(3), 335–348 (1989).
  • [18] R. Findeisen, L. Imsland, F. Allgower, and B. Foss, State and output feedback nonlinear model predictive control: an overview, European Journal of Control 9(2‒3), 190–206 (2003).
  • [19] K. Antoniewicz and K. Rafal, Model predictive current control method for four-leg three-level converter operating as shunt active power filter and grid connected inverter, Bull. Pol. Ac.: Tech.65(5), 601–607 (2017).
  • [20] P. Wiatrs and A. Krynski, Model predictive control of multilev-el cascaded converter with boosting capability – experimental results, Bull. Pol. Ac.: Tech. 65(5), 589–599 (2017).
  • [21] P. Wiatrs and M. Kazmierkowski, Model predictive control of multilevel cascaded converter with boosting capability – a simulation study, Bull. Pol. Ac.: Tech. 64(3), 581–590 (2016).
  • [22] J. Lee, W. Svrcek, and B. Young, A tuning algorithm for mod-el predictive controllers based on genetic algorithms and fuzzy decision making, ISA Transaction 47(1), 53–59 (2008).
  • [23] Y. Tan, D. Nesic, and I. Mareels, On non-local stability properties of extremum seeking control, Automatica 44(5), 889–903 (2006).
  • [24] Y. Tan, D. Nesic, and I. Mareels, On the choice of dither in extremum seeking systems: a case study, Automatica 44(5), 1446–1450 (2008).
  • [25] A. Rossiter, Model Predictive Control: a practical approach, CRC Press, 2003.
  • [26] E. Camacho and C. Bordons, Model Predictive Control, Springer Verlag London, 2005, 2nd edition.
  • [27] H. Waschl, D. Alberer, and L. del Re, Automatic tuning methods for MPC environments, In: Moreno-Díaz R., Pichler F., Quesada-Arencibia A. (eds) Computer Aided Systems Theory – EUROCAST 2011, Lecture Notes in Computer Science 6928 (Springer, Berlin, Heidelberg) 41–48 (2012).
  • [28] Q. Tran, J. Scholten, L. Ozkan, and A. Backx, A model-free ap-proach for auto-tuning of model predictive control, IFAC Pro-ceedings Volumes 47(3), 2189–2194 (2014).
  • [29] J. Garriga and M. Soroush, Model predictive control tuning methods: a review, Industrial Engineering and Chemical Re-search 49, 3505–3515 (2010).
  • [30] W. Cluett and E. Goderdhansingh, Autotuning for model based predictive control, Automatica 26(4), 691–697 (1990).DOI:10.1016/005‒1098(90)90046-K.
  • [31] S. Skogestad and C. Grimholt, The SIMC method for smooth PID controller tuning, Chapter 5 in Book: R. Vilanova, A. Visioli (eds.), PID Control in the Third Millennium, Advances in Indus-trial Control, pages 147–175, Springer-Verlag, London, 2015.
  • [32] K. Åström and T. Hägglund, Revisiting the Ziegler-Nichols step response method for PID control, Journal of Process Control 14 (2004) 635–650. DOI:10.1016/j.jprocont.2004.01.002.
  • [33] V. Alfaro and R. Vilanova, Model-reference robust tuning of PID controllers, Advances in Industrial Control, Springer International Publishing, Switzerland, 2016.
  • [34] M. Johnson and M. Moradi, PID control, Springer Verlag, Lon-don, 2005.
  • [35] B. Kristiansson and B. Lennartson, Robust and optimal tuning of PI and PID controllers, IEE Proceedings Control Theory and Ap-plications 149(1), 17–25 (2002). DOI:10.1049/ip-cta:20020088.
  • [36] I. Boiko, Non-parametric tuning of PID controllers. A modified relay-feedback test approach., Advances in Industrial Control, Springer Verlag, London, 2013.
  • [37] K. Papadopoulos, PID controller tuning using the magnitude optimum criterion, Springer International Publishing, Switzerland, 2015.
  • [38] C. Ionescu, D. Copot, A. Maxim, E. Dulf, R. Both, and R. De Keyser, Robust autotuning MPC for a class of process control appli-cations, IEEE – Automation, Quality, Testing, Robotics.DOI: 10.1109/AQTR.2016.7501356.
  • [39] R. De Keyser and C. Ionescu, Minimal information based simple identification method of fractional order systems for model based control applications, in: 11th Asian Control Conference, IEEE, Gold Coast, 1411‒1416, December 17–20, Australia, 2017.
  • [40] K. Starr, Single loop control methods, ABB Inc., Sweden, 2015.
  • [41] T. Liu, Q. Wang, and H. Huang, A tutorial review on process identification from step or relay feedback test, J Process Control23(10), 1597–1623 (2013).
  • [42] T. Liu and F. Gao, Industrial process identification and control design, step test and relay-experiment based methods, Springer Advances in Industrial Control, London, 2012.
  • [43] Q. Bi, W. Cai, E. Lee, Q. Wang, C. Hang, and Y. Zhang, Robust identification of first order plus dead time model from step response, Control Engineering Practice 7, 71–77 (1999).
  • [44] A. Rossiter and R. Haber, The effect of coincidence horizon on predictive functional control, Processes 3, 25–45 (2015).DOI: 10.3390/pr3010025.
  • [45] D. Copot, M. Ghita, and C. Ionescu, Simple alternatives to PIDtype control for processes with variable time-delay, Processes 7 (2019) DOI:10.3390/pr7030146.
  • [46] R. Soeterboek, Predictive control: a unified approach, TU Delft – Academic Press, The Netherlands, 1990.
  • [47] R. De Keyser, Model based predictive control for linear systems, UNESCO Encyclopaedia of Life Support Systems, Control Systems, Robotics and Automation Vol. XI, Article contribution, Eolss Publishers Co Ltd, Oxford (2003) 30 pages. DOI: available online at:‒43‒16‒01.pdf.
  • [48] R. De Keyser and A. Van Cauwenberghe, A self-tuning predictor as operator guide, In: R. Isermann (Ed.), Identification and System Parameter Estimation, 1249–1256 (1979).
  • [49] R. De Keyser and A. Van Cauwenberghe, A self-tuning multistep predictor application, Automatica 17(1), 167–174 (1981).
  • [50] R. De Keyser and C. Ionescu, The disturbance model in model based predictive control, in: IEEE Conf on Control Applications, IEEE, 446–451, Istanbul, June 23‒25, Turkey, 20103.
  • [51] D. de la Pena, D. Ramirez, E. Camacho, and T. Alamo, Application of an explicit min-max MPC to a scaled laboratory process, Control Engineering Practice 13(12), 1463–1471 (2005). DOI:10.1016/j.conengprac.2004.12.008.
  • [52] W. Wojsznis, J. Gudaz, T. Blevins, and A. Mehta, Practical approach to tuning MPC, ISA Transactions 42, 149–162 (2003).
  • [53] A. Al-Ghazzawi, E. Ali, A. Nouh, and E. Zafiriou, On-line tuning strategy for model predictive controllers, Journal of Process Control 11, 265–284 (2001). DOI: PII: S0959‒1524(00)00033‒0.
  • [54] J. Normey-Rico, Control of Dead-Time processes, Springer, London, 2007.
  • [55] C. Ionescu, C. Muresan, D. Copot, and R. De Keyser, Constrained multivariable predictive control of a train of cryogenic 13C separation columns, in: 11th IFAC Symposium on Dynamics and Control of Process Systems, IFAC, 1103–1108, Trondheim, June 6–8, Norway, 2016.
  • [56] M. Sbarciog, R. De Keyser, S. Cristea, and C. De Prada, Non-linear predictive control of processes with variable time delay. a temperature control case study, in: IEEE International Conference on Control Applications, IEEE, 601–606, San Antonio, CA Date: SEP 03‒05, 2008.
  • [57] C. Ionescu, R. Hodrea, and R. De Keyser, Variable time-delay estimation for anesthesia control during intensive care, IEEE Transactions on Biomedical Engineering 58, 363–369 (2011).
  • [58] A. Chevalier, C. Copot, C. Ionescu, R. De Keyser, A three-year study of a remote laboratory used in control engineering studies, IEEE Transactions on Education 60 (2017) 127–133.
  • [59] C. Copot, Y. Zhong, C. Ionescu, and R. De Keyser, Tuning fractional PID controllers for a steward platform based on frequency domain and artificial intelligence methods, Central European Journal of Physics 11, 702–713 (2013).
  • [60] Y. Zhong, A. Dutta, C. Copot, C. Ionescu, and R. De Keyser, Implementation of a fractional PD controller tuned by genetic algorithm for a steward platform, in: 9th Asian Control Conference, IEEE, Istanbul, June 23‒25, Turkey, 2013.
  • [61] A. Chevalier, C. Copot, C. Ionescu, and R. De Keyser, Automatic calibration with robust control of a six DoF mechatronic system, Mechatronics 35, 102–108 (2016).
  • [62] A. Maxim, D. Copot, R. De Keyser, and C. Ionescu, An industrially relevant formulation of a distributed model predictive control algorithm based on minimal process information, Journal of Process Control 68, 240–253 (2018).DOI:10.1016/j.jprocont.2018.06.004.
  • [63] D. Fu, C. Ionescu, E. Aaghezzaf, and R. De Keyser, Decentralized and centralized model predictive control to reduce the bullwhip effect in supply chain management, Computers and Industrial Engineering 73, 21–31 (2014).
  • [64] C. Reverter, J. Ibarrola, and J. Cano Izquierdo, Tuning rules for a quick start up in dynamic matrix control, ISA Transactions 53, 612–627 (2014).
  • [65] B. Huyck, J. De Brabanter, B. De Moor, J. Van Impe, and F. Logist, Online model predictive control of industrial processes using low level control hardware: a pilot scale distillation column case study, Control Engineering Practice 28, 34–48 (2014).
  • [66] C. Muresan, C. Ionescu, E. Dulf, R. Rusu-Both, and S. Folea, Advantage of low cost predictive control: study case on a train of distillation columns, Chemical Engineering and Technology41(10), 1936–1948 (2018).
  • [67] C. Pop, C. Ionescu, and R. De Keyser, Time delay compensation for the secondary processes in a multivariable carbon isotope separation unit, Chemical Engineering Science 80, 205‒218 (2012).
  • [68] D. Copot, A. Maxim, R. De Keyser, and C. Ionescu, Multivariable control of sextuple tank system with non-minimum phase dynamics, in: IEEE Int Conf on Automation, Quality and Testing, Robotics, IEEE, 399–404, Cluj-Napoca, 19–21 May, Romania, 2016.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.