PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Black Liquor from Date Palm on the Workability and Compressive Strength of Portland Cement and Concrete

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lignin is the second most abundant natural polymer. Due to the high content of carbon and hydrogen (C-H, C-C, C=O), it can be used as a potential dispersant for cement matrix. The objective of this study is to extract lignin from date palm and study its effect in the form of black liquor (BL) on the rheological and physic-mechanical properties of the cements and concrete. The lignin in black liquor form represents approximately 30 wt% dry weight of date palm. It is a heteropolymer composed primarily of methoxylated phenylpropylene alcohol monomeric units interconnected by a variety of stable carbon-carbon and carbon-oxygen-carbon (ether and esters) linkages. The results found show the positive effect on the workability of cement and concrete and confirms its dispersion effect by improving compressive strength of concrete during the early and the later ages of hydration.
Rocznik
Strony
5--18
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
  • Department of Chemistry, Faculty of Sciences, University M’Hamed Bougara de Boumerdes, Avenue de l’indépendance, 35000 Boumerdes, Algeria
autor
  • Department of Chemistry, Faculty of Sciences, University M’Hamed Bougara de Boumerdes, Avenue de l’indépendance, 35000 Boumerdes, Algeria
autor
  • Laboratory of Fibrous Polymers Treatment and Forming (L.T.M.F.P), University M'Hamed Bougara Boumerdes, Avenue de l'independance, Boumerdes 35000, Algeria
autor
  • University Politehnica Timisoara, Bdul. Mihai Viteazu No.1, Romania
autor
  • Department of Chemistry, Faculty of Sciences, University M’Hamed Bougara de Boumerdes, Avenue de l’indépendance, 35000 Boumerdes, Algeria
Bibliografia
  • 1. Demesa A., Laari A., Sillanpää M., Koiranen T. Valorization of lignin by partial wet oxidation using sustainable heteropoly acid catalysts. Molecules, 22 (2017) 1625.
  • 2. Tao C.; Kutchko B.G.; Rosenbaum E.; Wu W.-T.; Massoudi, M. Steady flow of cement slurry. Energies, 12(13) (2019) 2604.
  • 3. Ahmad M., Taylor C.R., Pink D., Burton K., Eastwood D., Bending G.D., Bugg T.D. Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Molecular BioSystems, 5 (2010) 815–821.
  • 4. Ferraris C.F. Measurement of the rheological properties of high performance concrete: state of the art report. Journal of Research of the National Institute of Standards and Technology, 104(5) (1999) 461–478.
  • 5. Cyr M., Legrand C., Mouret M. Study of the shear thickening effect of superplasticizers on the rheological behaviour of cement pastes containing or not mineral additives. Cement and Concrete Research, 30 (2000) 1477–1483.
  • 6. Jayasree C., Gettu R. Experimental study of the flow behaviour of superplasticized cement paste. Materials and Structures, 41(2008) 1581–1593.
  • 7. Panaseti P., Damianou,Y., Georgiou G.C., Housiadas K.D. Pressure-driven flow of a Herschel-Bulkley fluid with pressure-dependent rheological parameters. Physics of Fluids, 30(3) 2018 030701.
  • 8. Dalmas Guo-Hua. La biolignine TM : structure et application a l’élaboration de la résine époxy. Doctorat Thesis , Institut National Polytechnique de Toulouse, (2011).
  • 9. De Larrard F., Ferraris C.F., Sedran T. Fresh concrete: a Herschel-Bulkley material. Materials and Structures, 31(1998) 494–498.
  • 10. Djebien R., Belachia M., Hebhoub H. Effect of marble waste fines on rheological and hardened properties of sand concrete. Structural Engineering and Mechanics, 53(6) (2015) 1241–1251.
  • 11. Achinivu E. Protic ionic liquids for lignin extraction—A lignin characterization study. International Journal of Molecular Sciences, 19(2) (2018) 428.
  • 12. Chen F., Shahabadi S.I.S., Zhou D., Liu W., Kong J., Xu J., Lu X. Facile preparation of cross-linked lignin for efficient adsorption of dyes and heavy metal ions. Reactive and Functional Polymers, 143 (2019) 104336.
  • 13. Li X., Li M., Pu Y., Ragauskas A.J., Klett A.S., Thies M., Zheng Y. Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy, 123 (2018) 664–674.
  • 14. Goisis M., Buscema A., De Marco T. Characterization of the rheological properties of cement paste prepared with polycarboxylate type superplasticizer. Seventh CANMET/ ACI. International Conference on Superplasticizers and Other Chemical Admixtures in Concrete, Berlin (2003).
  • 15. Uchikawa H., Sawaki D., Hanehara S. Influence of kind and added timing of organic admixture on the composition, structure and property of fresh cement paste. Cement and Concrete Research, 25 (2) (1995) 353 – 364.
  • 16. Sella Kapu N., Trajano H.L. Review of hemicellulose hydrolysis in softwoods and bamboo. Biofuels Bioprod Biorefin, 8(2014) 857-870.
  • 17. Kim H.Y., Lee E.S., Kim W.S., Suh D.J., Ahn B.S. Material and heat balances of bioethanol production process by concentrated acid saccharification process from lignocellulosic biomass. Clean Technology, 17(2) (2011) 156–165.
  • 18. Kline L.M., Hayes D.G., Womac A.R., Labbe N. Simplified determination of lignin content in hard and soft woods via UV-spectrophotometric analysis of biomass dissolved in ionic liquids. BioResources. 5(3) (2010) 1366–1383.
  • 19. Helnan-Moussa B., Vanhove Y., Wirquin E. Thixotropic behaviour and structural breakdown of fresh cement paste: Comparison between two types of VMA. Advances in Cement Research, 25(4) (2013) 235–244.
  • 20. Li J. Isolation of lignin from wood. Saimaa University of Applied Sciences, Imatra. Unit of Technology, Degree Programme in Paper Technology. Bachelor’s Thesis (2011) 57.
  • 21. Lim J.H., Lee G.C. Effect of blast furnace slag on rheological properties of fresh mortar. Journal of the Korea Institute of Building Construction, 14(4) (2014) 285–291.
  • 22. A. Irekti, B. Bezzazi, A. Smith, C. Aribi. Experimental Study of Dielectric Properties of Composite Materials Pozzolan/DGEBA” Journal Polymer Composites, 38(2) (2017).
  • 23. Clément Celhay Céline E. Mathieu Laure Candy. Aqueous extraction of polyphenols and antiradicals from wood by-products by 4 twin-screw extractor: Feasibility study. Comptes Rendus Chimie, 17(3) (2014).
  • 24. M.Fasching, P.Schröder, R.Wollboldt, H.Weber, H. Sixta. A new and facile method for isolation of lignin from wood based on complete wood dissolution. Holzforschung, 62(2008) 15–23.
  • 25. M. Saric-Coric, K.H. Khayat, A. Tagnit-Hamou. Performance characteristics of cement grouts made with various combinations of high-range water reducer and cellulose based viscosity modifier. Cement and Concrete Research, 33 (12) (2003)1999–2008.
  • 26. Stryczek S., Wiśniowski R., Gonet A., Złotkowski A., Ziaja J. Influence of polycarboxylate superplasticizers on rheological properties of cement slurries used in drilling technologies. Archives of Mining Sciences, 58 (3) (2013) 719–728.
  • 27. Nehdi M., Rahman M.A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction. Cement and Concrete Research, 34 (2004) 1993–2007.
  • 28. NA 231, Testing cement methods - Determination of the finesse, Algerian standard, (2006).
  • 29. NA 774, Admixtures for concrete, Definitions, requirements, conformity, marking and labeling, Algerian standard, (2006).
  • 30. NA EN 933-1, Granulometric analysis of aggregates (sand and gravel), Algerian standard (2009).
  • 31. Jayasree C., Gettu R. Experimental study of the flow behaviour of superplasticized cement paste. Materials and Structures, 41(9) (2008) 1581–1593.
  • 32. Qian Y., Kawashima S. Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy. Cement and Concrete Composites, 86 (2018) 288–296.
  • 33. Irekti A., Bezzazi B. Rheological study of composite materials based on thermosetting matrix and fillers mineral. Key Engineering Materials, 550 (2013) 79–84.
  • 34. Oualit M., Irekti A., Brahim H.A.M.I. Evaluation of the performance of local cement for oil well cementing operations in Algeria. Journal of Materials and Engineering Structures, 5(13) (2018) 5–13.
  • 35. Oualit M., Irekti A., Melinge Y. Saturation point of superplasticizers determined by rheological tests for self compacting concrete. Periodica Polytechnica Civil Engineering, 62(2) (2017) 346–352.
  • 36. Papo A., Piani L. Effect of various superplasticizers on the rheological properties of Portland cement pastes. Cement and Concrete Research, 34 (2004) 2097–2101.
  • 37. Park J., Kim J.Y., Choi J.W. Degradation of plant lignin with the supercritical ethanol and Ru/C catalyst combination for lignin-oil. Journal of the Korean Wood Science and Technology, 43(3) (2015) 355–363.
  • 38. Ralph J., Lundquist K., Brunow G., Lu F., Kim H., et al. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochemistry Reviews, 3 (2004) 29–60.
  • 39. Kossakowski P.G., Raczkiewicz W. Comparative analysis of measured and predicted shrinkage strain in concrete. Advances in Materials Science, 14 (2) (2014) 5–13.
  • 40. Roussel N., Coussot P. “Fifty cent rheometer” for yield stress measurements: From slump to spreading flow. Journal of Rheology, 49(3) (2005) 705–718.
  • 41. El-Mekkawi S.A., Ismail I.M., El-Attar M.M., Fahmy A.A., Mohammed S.S. Utilization of black liquor as concrete admixture and set retarder aid. Journal of Advanced Research, 2 (2011) 163–169.
  • 42. Abo-El-Enein S.A., El-Gamal S.M.A., Aiad I.A., Azab M.M., Mohamed O.A. Early hydration characteristics of oil well cement pastes admixed with newly prepared organic admixture. HBRC Journal, 14 (2018) 207–214.
  • 43. Shen L., Chepelev I., Liu J., Wang W. Prediction of quantitative phenotypes based on genetic networks: a case study in yeast sporulation. BMC Systems Biology, 4 (128) (2010).
  • 44. Irekti A., Bezzazi B., Boualam C., Aribi C., Dilmi H. FTIR analysis and rheological behavior of bisphenol: a diglycidyl ether resin filled fume-silica. Journal of Materials Science and Engineering A, 4 (11) (2014) 340–347.
  • 45. Stewart J.J., Akiyama T., Chapple C., Ralph J., Mansfield S.D. The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiology, 150 (2009) 621–635.
  • 46. Laurichesse S., Avérous L. Chemical modification of lignins: Towards biobased polymers. Progress in Polymer Science, 39 (7) (2014) 1266–1290.
  • 47. NA 431, Determination of the consistency of fresh concrete-slump tests, Algerian standard, (2003).
  • 48. Kalami S., Nejad M. Choosing the right lignin for phenolic adhesive application. International Journal of Chemical and Molecular Engineering, 11(3) (2017).
  • 49. Raczkiewicz W., Bacharz M., K. Bacharz. Experimental verification of the concrete shrinkage strains course according to EN 1992-2 standard. Advances in Materials Science, 15 (2) (2015) 22–29.
  • 50. Yan T., Xu Y., Yu C. The isolation and characterization of lignin of kenaf fiber. Journal of Applied Polymer Science, 114 (2009) 1896–1901.
  • 51. Li Y. Synthesis and super retarding performance in cement production of diethanolamine modified lignin surfactant. Construction and Building Materials, 52 (2014) 116–121.
  • 52. NF EN 12930-3, Compressive strength of test specimens, French standard, France, (2003).
  • 53. Yuan Q., Xiang Y., Yan Z., Han C., Jan L.Y., Jan Y.N. Light-induced structural and functional plasticity in Drosophila larval visual system. Science, 333(6048) (2011) 1458–1462.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1b1c2af-7ad7-4851-9809-afd5c937042c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.