PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inertial iterative method with self-adaptive step size for finite family of split monotone variational inclusion and fixed point problems in Banach spaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we propose and study a new inertial iterative algorithm with self-adaptive step size for approximating a common solution of finite family of split monotone variational inclusion problems and fixed point problem of a nonexpansive mapping between a Banach space and a Hilbert space. This method combines the inertial technique with viscosity method and self-adaptive step size for solving the common solution problem. We prove a strong convergence result for the proposed method under some mild conditions. Moreover, we apply our result to study the split feasibility problem and split minimization problem. Finally, we provide some numerical experiments to demonstrate the efficiency of our method in comparison with some well-known methods in the literature. Our method does not require prior knowledge or estimate of the operator norm, which makes it easily implementable unlike so many other methods in the literature, which require prior knowledge of the operator norm for their implementation.
Wydawca
Rocznik
Strony
193--216
Opis fizyczny
Bibliogr. 60 poz., tab., wykr.
Twórcy
  • School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
  • School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
  • School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
Bibliografia
  • [1] Y. Censor, T. Bortfeld, B. Martin, and A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol. 51 (2006), 2353–2365.
  • [2] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in product space, Numer. Algorithms 8 (1994), 221–239.
  • [3] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems 20 (2004), 103–120.
  • [4] A. Taiwo, L. O. Jolaoso, and O. T. Mewomo, Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert spaces, J. Ind. Manag. Optim. 17 (2021), no. 5, 2733–2759.
  • [5] O. T. Mewomo and F. U. Ogbuisi, Convergence analysis of an iterative method for solving multiple-set split feasibility problems in certain Banach spaces, Quaest. Math. 41 (2018), no. 1, 129–148.
  • [6] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl. 150 (2011), 275–283.
  • [7] X. Zhao, J. C. Yao, and Y. Yao, A proximal algorithm for solving split monotone variational inclusions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 82 (2020), no. 3, 43–52.
  • [8] T. O. Alakoya and O. T. Mewomo, Viscosity S-iteration method with inertial technique and self-adaptive step size for split variational inclusion, equilibrium and fixed point problems, Comput. Appl. Math. 41 (2021), 39.
  • [9] H. Dehghan, C. Izuchukwu, O. T. Mewomo, D. A. Taba, and G. C. Ugwunnadi, Iterative algorithm for a family of monotonne inclusion problems in CAT(0) spaces, Quaest. Math. 43 (2020), no. 7, 975–998.
  • [10] S. Reich and T. M. Tuyen, Iterative methods for solving the generalized split common null point problem in Hilbert spaces, Optimization 69 (2020), 1013–1038.
  • [11] S. Reich and T. M. Tuyen, Two projection methods for solving the multiple-set split common null point problem in Hilbert spaces, Optimization 69 (2020), no. 9, 1913–1934.
  • [12] S. Reich and T. M. Tuyen, Parallel iterative methods for solving the generalized split common null point problem in Hilbert spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), 180.
  • [13] T. M. Tuyen, N. T. T. Thuy, and N. M. Trang, A strong convergence theorem for a parallel iterative method for solving the split common null point problem in Hilbert spaces, J. Optim. Theory Appl. 138 (2019), no. 2, 271–291.
  • [14] T. M. Tuyen, A strong convergence theorem for the split common null point problem in Banach spaces, Appl. Math. Optim. 79 (2019), 207–227.
  • [15] T. M. Tuyen, N. S. Ha, and N. T. T. Thuy, A shrinking projection method for solving the split common null point problem in Banach spaces, Numer. Algorithms 81 (2019), 813–832.
  • [16] P. E. Maingé, A viscosity method with no spectral radius requirements for the split common fixed point problem, Eur. J. Oper. Res. 235 (2014), 17–27.
  • [17] A. Moudafi and B. S. Thakur, Solving proximal split feasibility problems without prior knowledge of operator norms, Optim. Lett. 8 (2014), no. 7, 2099–2110.
  • [18] S. Reich and T. M. Tuyen, A new algorithm for solving the split common null point problem in Hilbert spaces, Numer. Algorithms 83 (2020), 789–805.
  • [19] Y. Censor, A. Gibali, and S. Reich, Algorithms for the split variational inequality problem, Numer. Algor. 59 (2012), 301–323.
  • [20] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul. 4 (2005), 1168–1200.
  • [21] A. Gibali, A new non-Lipschitzian projection method for solving variational inequalities in Euclidean spaces, J. Nonlinear Anal. Optim. 6 (2015), 41–51.
  • [22] L. O. Jolaoso, A. Taiwo, T. O. Alakoya, and O. T. Mewomo, A self adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spaces, Demonstr. Math. 52 (2019), 183–203.
  • [23] S. H. Khan, T. O. Alakoya, and O. T. Mewomo, Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings in Banach spaces, Math. Comput. Appl. 25 (2020), 54. Monotone variational inclusion problems  213
  • [24] C. C. Okeke and O. T. Mewomo, On split equilibrium problem, variational inequality problem and fixed point problem for multi-valued mappings, Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2017), no. 2, 223–248.
  • [25] H. Raguet, J. Fadili, and G. Peyré, A generalized forward-backward splitting, SIAM J. Imaging Sci. 6 (2013), 1199–1226.
  • [26] A. Taiwo, T. O. Alakoya, and O. T. Mewomo, Strong convergence theorem for solving equilibrium problem and fixed point of relatively nonexpansive multi-valued mappings in a Banach space with applications, Asian-Eur. J. Math. 14 (2021), no. 8, 2150137.
  • [27] G. N. Ogwo, C. Izuchukwu, and O. T. Mewomo, A modified extragradient algorithm for a certain class of split pseudomonotone variational inequality problem, Numer. Algebra Control Optim. 12 (2022), no. 2, 373–393.
  • [28] G. N. Ogwo, T. O. Alakoya, and O. T. Mewomo, Iterative algorithm with self-adaptive step size for approximating the common solution of variational inequality and fixed point problems, Optimization (2021), DOI: https://doi.org/10.1080/02331934.2021.1981897.
  • [29] C. Byrne, Y. Censor, A. Gibali, and S. Reich, The split common null point problem, J. Nonlinear Convex Anal. 13 (2012), no. 4, 759–775.
  • [30] A. Moudafi, Viscosity approximation method for fixed points problems, J. Math. Anal. Appl. 241 (2000), 46–55.
  • [31] S. Suantai, K. Srisap, N. Naprang, M. Mamat, V. Yundon, and P. Cholamjiak, Convergence theorems for finding the split common null point in Banach spaces, Appl. Gen. Topol. 18 (2017), no. 2, 345–360.
  • [32] C. Byrne, Y. Censor, A. Gibali, and S. Reich, Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Anal. 13 (2012), 759–775.
  • [33] K. R. Kazmi and S. H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optim. Lett. 8 (2014), no. 3, 1113–1124.
  • [34] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, U.S.S.R. Comput. Math. Math. Phys. 4 (1964), no. 5, 1–17.
  • [35] H. Attouch, J. Peypouquet, and P. Redont, A dynamical approach to an inertial forward-backward algorithm for convex minimization, SIAM J. Optim. 24 (2014), 232–256.
  • [36] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci. 2 (2009), 183–202.
  • [37] G. N. Ogwo, C. Izuchukwu, and O. T. Mewomo, Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity, Numer. Algorithms 88 (2021), no. 3, 1419–1456.
  • [38] G. N. Ogwo, C. Izuchukwu, Y. Shehu, and O. T. Mewomo, Convergence of relaxed inertial subgradient extragradient methods for quasimonotone variational inequality problems, J. Sci. Comput. 90 (2022), 10.
  • [39] T. O. Alakoya, A. O. E. Owolabi, and O. T. Mewomo, An inertial algorithm with a self-adaptive step size for a split equilibrium problem and a fixed point problem of an infinite family of strict pseudo-contractions, J. Nonlinear Var. Anal. 5 (2021), 803–829.
  • [40] T. O. Alakoya, A. O. E. Owolabi, and O. T. Mewomo, Inertial algorithm for solving split mixed equilibrium and fixed point problems for hybrid-type multivalued mappings with no prior knowledge of operator norm, J. Nonlinear Convex Anal. (2021), (accepted, to appear).
  • [41] D. V. Thong and D. V. Hieu, Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems, Numer. Algorithms 80 (2019), 1283–1307.
  • [42] L. V. Long, D. V. Thong, and V. T. Dung, New algorithms for the split variational inclusion problems and application to split feasibility problems, Optimization 68 (2019), no. 12, 2339–2367.
  • [43] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM J. Optim. 19 (2018), no. 2, 824–835.
  • [44] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotonne operators in Banach spaces, Arch. Math. 91 (2018), no. 2, 166–177.
  • [45] K. Aoyama, F. Kohsaka, and W. Takahashi, Three generalizations of firmly nonexpansive mappings: their relations and continuity properties, J. Nonlinear Convex Anal. 10 (2009), 131–147.
  • [46] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000. (in Japanese)
  • [47] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417–428.
  • [48] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
  • [49] J. B. Hiriart-Urruty and C. Lemarchal, Fundamentals of Convex Analysis, Springer, Berlin, 2001.
  • [50] M. A. Olona, T. O. Alakoya, A. O.-E. Owolabi, and O. T. Mewomo, Inertial shrinking projection algorithm with self-adaptive step size for split generalized equilibrium and fixed point problems for a countable family of nonexpansive multivalued mappings, Demonstr. Math. 54 (2021), 47–67.
  • [51] M. A. Olona, T. O. Alakoya, A. O.-E. Owolabi, and O. T. Mewomo, Inertial algorithm for solving equilibrium, variational inclusion and fixed point problems for an infinite family of strictly pseudocontractive mappings, J. Nonlinear Funct. Anal. 2021 (2021), 10.
  • [52] A. Taiwo, L. O. Jolaoso, and O. T. Mewomo, Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert Spaces, J. Ind. Manag. Optim. 17 (2021), no. 5, 2733–2759.
  • [53] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, vol. 28, Cambridge University Press, Cambridge, United Kingdom, 1990.
  • [54] Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.
  • [55] T. O. Alakoya, L. O. Jolaoso, and O. T. Mewomo, Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization 70 (2021), no. 2, 545–574.
  • [56] G. López, M. V. Márquez, F. Wang, and H. K. Xu, Forward-backward splitting methods for accretive operators in Banach spaces, Abstr. Appl. Anal. 2012 (2012), 109236.
  • [57] M. Abbas, M. AlSharani, Q. H. Ansari, G. S. Iyiola, and Y. Shehu, Iterative methods for solving proximal split minimization problem, Numer. Algorithms 78 (2018), 193–215.
  • [58] Y. Yao, M. Postolache, X. Qin, and J.-C. Yao, Iterative algorithm for proximal split feasibility problem, U.P.B. Sci. Bull. Series A 80 (2018), no. 3, 37–44.
  • [59] D. Butnariu and A. N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publishers, London, 2000.
  • [60] K. Sitthithakerngkiet, J. Deepho, and P. Kumam, A hybrid viscosity algorithm via modify the hybrid steepest descent method for solving the split variational inclusion in image reconstruction and fixed point problems, Appl. Math. Comput. 250 (2015), 986–1001.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1af6959-380f-4aa6-b4a5-b5d801c76e84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.