
Opuscula Math. 42, no. 6 (2022), 805–832
https://doi.org/10.7494/OpMath.2022.42.6.805 Opuscula Mathematica

STRONG CONSISTENCY OF
THE LOCAL LINEAR RELATIVE

REGRESSION ESTIMATOR
FOR CENSORED DATA

Feriel Bouhadjera and Elias Ould Saïd

Communicated by Mirosław Pawlak

Abstract. In this paper, we combine the local linear approach to the relative error
regression estimation method to build a new estimator of the regression operator
when the response variable is subject to random right censoring. We establish the
uniform almost sure consistency with rate over a compact set of the proposed estimator.
Numerical studies, firstly on simulated data, then on a real data set concerning the
death times of kidney transplant patients, were conducted. These practical studies
clearly show the superiority of the new estimator compared to competitive estimators.
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1. INTRODUCTION

To explore the relationship between two random variables (rv), regression models
have appeared as a common and flexible tool in various disciplines, such as biology,
medicine, economics, insurance and others. Consider a random vector (X, T ) taking
values in R × R+

⋆ where T is the interest rv with unknown distribution function (d.f.)
F and X is an explanatory variable with a density function f(·). Hence, let us consider
the following nonparametric regression model:

T = m(X) + ε,

where m(·) is an unknown regression operator and ε is the unobservable error
term which is a rv with E[ε] = 0, a finite second moment and independent of X.
The regression function appears as a quantity that contains all the information about
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the dependence structure. Usually, to estimate the regression function, we minimize
the following loss function:

mCR(x) := arg min
m∈R

E
[
(T − m(x))2 |X = x

]
, (1.1)

for a fixed x. However, it is well known that the last loss function is inefficient in the
presence of outliers in data, which is a common case in practical situations.

The aim of the present paper is to propose a new approach which reduces these
drawbacks. Relative error regression (RER) estimation has been recently used in regres-
sion analysis as an alternative to the restrictions imposed by the classical regression
approach. So, we consider the following minimizing problem of the mean squared
relative error loss function, that is, for T > 0

mRER(x) := arg min
m∈R

E

[(
(T − m(x))

T

)2 ∣∣∣X = x

]
. (1.2)

This criterion has been widely studied for parametric models, without pretending to
exhaustivity, we refer to [6] for a discussion about the previous works and [18] for
a real example on the electricity consumption. When the first two conditional inverse
moments of T given X are finite, [26] showed that the solution of (1.2) can be written
by the following ratio:

mRER(x) = E[T −1|X = x]
E[T −2|X = x] =: m1(x)

m2(x) =: r1(x)
r2(x) . (1.3)

Here mℓ(x) = rℓ(x)/f(x) and rℓ(x) =
∫

t−ℓfX,T (x, t)dt, for ℓ = 1, 2, with fX,T (·, ·)
and f(·) are the joint and marginal density of the couple (X, T ) and X respectively.
Among the first contributors to the RER method in the nonparametric framework, we
refer to [27] and [28] with applications in finance and image analysis respectively. In the
recent literature, the RER method has received an increasing interest, we can quote [5]
where it was considered the regression function estimation for a functional explanatory
variable while [1] have looked into the case where the data are from a strictly stationary
spacial process. [30] constructed an estimator based on a deconvolution problem.
[19] established the consistency and the asymptotic normality of the regression function
based on a least product relative error.

It is well-known that the local linear (LL) method has several advantages over the
classical kernel smoothing. Especially, one of its known advantages is the reduction
of side effects. More details on the importance of the LL approach can be found in
[12,13] and [14]. For recent works on the estimation of the regression function using
the LL method, we refer to [20] for independent complete data, [10, 11] for dependent
censored data and [3] for independent right censored data.

All these works concern the complete data except the last two papers. However, in
many situations, the data can not be observed completely. Important examples are
the survival time of patients or the unemployment time and many others in different



Strong consistency of the local linear relative regression estimator for censored data 807

fields. A frequent problem in survival analysis is right-censoring, which may be due to
different causes: the loss of some subjects under study, and the end of the follow-up
period. Examples of situations where this kind of data occur can be found in [23].

Inspired by all the articles above, our work in this paper aims to contribute to
the research on nonparametric models by combining the two methods RER and LL
when the data are censored. We extend the work of [20] to the censoring framework
by stating a strong result. We point out that in the last paper, only a pointwise
of the bias and variance terms have been investigated. In our paper, we build the
local linear relative error regression (LLRER) estimator and establish its uniform
almost sure consistency with rate over a compact set under appropriate conditions.
Simulation experiments emphasize that the LLRER, is highly competitive to the
existing estimators for regression function. To the best of our knowledge, this problem
is open up to now and there is no analogous result.

This paper is organized as follows. The general idea of the LL fit of the mean
squared relative error regression function in the censoring framework is described
in Section 2. Assumptions and theoretical results are given in Section 3 and some
simulation results that illustrate the performance of the proposed procedure are given
in Section 4. Finally, Section 5 is devoted to auxiliary results and technical details.

2. THE MODEL

In this section, our interest is on the estimation of the relative regression operator
mRER(·) given by (1.3). According to the right-censoring mechanism, instead of
observing T we only observe (Y, δ) where Y = min(T, C) and δ = 1{T ≤C}, here 1(·)
is the indicator function. The rv C represent the censoring time, which is independent
of T and with d.f. G. The observed data becomes (X, Y, δ). From now on, we will
always make the following assumption:

(X, T ) and C are independent. (2.1)

This assumption is required to make the estimation of the censoring distribution
easier. However, it is reasonable only when the censoring is not associated with
the characteristic of the individuals under study. Let {(Xi, Yi, δi), i = 1, . . . , n} be
n independent and identically distributed (iid) vectors as (X, Y, δ). Our main aim
is to estimate the RER function defined in (1.3) using the LL fit. The extension
of nonparametric LL procedures to the censored framework requires to replace the
unavailable data by a suitable construction of the observed data given by

T̃ −ℓ
i = δiY

−ℓ
i

G(Yi)
, for ℓ = 1, 2 and 1 ≤ i ≤ n, (2.2)

where G(·) = 1 − G(·) denotes the survival function of the rv C. The new variables
defined in (2.2) are called “synthetic data” and permit to consider the effect of
censoring in the construction of our estimator, for more details, we refer to [4] and [24].
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In this spirit, based on this construction of the data, using the conditional expectation
property and under the assumption (2.1), for ℓ = 1, 2, we have

E
[
T̃ −ℓ

1 |X1 = x
]

= E

[
δ1Y −ℓ

1
G(Y1)

∣∣∣X1 = x

]

= E

[
T −ℓ

1
G(T1)

E
[
1{T1≤C1}|T1

] ∣∣∣X1 = x

]

= E
[
T −ℓ

1 |X1 = x
]

= mℓ(x).

Modeling by the LL method, we assume that the first derivative of m(x) at the point x
exists and is continuous, so that m(X) can be approximated by a linear function, that
is, m(X) ≈ m(x) + m′(x)(X − x) =: β1 + β2(X − x). Then, (1.2) is the solution of
the following optimization problem:

arg min
(β1,β2)∈R2

{
n∑

i=1
T̃ −2

i (Yi − β1 − β2(Xi − x))2
Kh(Xi − x)

}
(2.3)

where Kh(·) := K
( ·

h

)
is a kernel density function and h := hn denotes a smoothing

parameter converging to 0 with an increasing sample size. By elementary calculus, the
solution of the least relative squares problem (2.3) yields

β̃1 =: m̃LLRER(x) =: r̃1(x)
r̃2(x) ,

with
r̃ℓ(x) = 1

(nh)2

n∑

i,j=1
w̃ℓ

i,j(x), (2.4)

where

w̃ℓ
i,j(x) = (Xi − x) ((Xi − x) − (Xj − x)) Kh(Xi − x)Kh(Xj − x)T̃ −2

i T̃ −ℓ
j , (2.5)

for ℓ = 1, 2. Of course in data analysis, the survival function G(·) is unknown and needs
to be estimated. This can be done via [21] (KM) as an estimator of G(·) defined by

Gn(t) =





∏n
i=1

(
1 − 1−δ(i)

n−i+1

)1{Y(i)≤t} if t < Y(n),

0 otherwise,
(2.6)

where Y(1) < Y(2) < . . . < Y(n) are the order statistics of the Yi and δ(i) is the
corresponding uncensored indicator. The properties of Gn(t) have been studied by
many authors. So, (2.2) becomes

T̂ −ℓ
i = δiY

−ℓ
i

Gn(Yi)
, for ℓ = 1, 2 and 1 ≤ i ≤ n. (2.7)
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Replacing (2.7) in (2.5) gives us a feasible LLRER estimate expressed as

m̂LLRER(x) =: r̂1(x)
r̂2(x) , (2.8)

with
r̂ℓ(x) = 1

(nh)2

n∑

i,j=1
ŵℓ

i,j(x) (2.9)

where

ŵℓ
i,j(x) = (Xi − x) ((Xi − x) − (Xj − x)) Kh(Xi − x)Kh(Xj − x)T̂ −2

i T̂ −ℓ
j , (2.10)

for ℓ = 1, 2. For technical reasons, we will give a second form to the LLRER estimator
which will be used in the proofs. So, (2.9) becomes for ℓ = 1, 2:

r̂ℓ(x) = Ŝ2,2(x)Ŝℓ,0(x) − Ŝ2,1(x)Ŝℓ,1(x) (2.11)

where for γ = 0, ℓ

Ŝℓ,γ(x) = 1
nh

n∑

i=1
T̂ −ℓ

i (Xi − x)γKh(Xi − x). (2.12)

Then, replacing (2.11) in (2.8) gives us another way to write the LLRER estimator.
We want to mention that the pseudo estimator can also be written in this second form,
just by replacing (2.12) by

S̃ℓ,γ(x) = 1
nh

n∑

i=1
T̃ −ℓ

i (Xi − x)γKh(Xi − x). (2.13)

In what follows, we will adopt the convention 0/0 = 0 in such a case that if, for
example, r̂1(·) = 0 and r̂2(·) = 0, the ratio r̂1(·)/r̂2(·) in (2.8) will be interpreted
as zero.
Remark 2.1.
(1) If β2 = 0 in (2.3), we come back to the RER function estimator of (1.3) defined

in [22].
(2) In the case of complete data, i.e. we replace T̂ −ℓ for ℓ = 1, 2 by the variable of

interest T in (2.10), the resulting estimator (2.8) of (1.3) has been defined in [20].
(3) A crucial point in censored regression is to extend the identifiability assumption

on the independence of T and C defined in (2.1) to the case where the explanatory
variables are present. In this spirit, one may impose that T and C are independent
conditionally to X. Then, the synthetic data given in (2.7) becomes

T̂i = δiY
−ℓ

i

Gn(Yi|Xi)
, for ℓ = 1, 2 and 1 ≤ i ≤ n (2.14)

where Gn(Yi|Xi) is Beran’s estimator of the conditional survival function of the rv
C given X, for more details see [2]. The property of this estimator has been studied
by [7, 8]. Replacing (2.14) in (2.10) we obtain a feasible estimate (2.8) of (1.3).
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Throughout this paper, we denote by

τF := sup
{

x : F (x) > 0
}

and τG := sup
{

x : G(x) > 0
}

be the right support endpoints of F and G, respectively. Let τ such that 0 < τ <
τF < ∞, G(τ) > 0 which implies τ < τF ≤ τG, which were also assumed in [17].

3. ASSUMPTIONS AND MAIN RESULTS

Let C referring to a compact set of C0, where C0 = {x ∈ R : f(x) > 0} is an open
set. Let C be any generic positive constant whose value is allowed to change. In addition,
as T is a lifetime, it can be supposed to be bounded. In the following, we present all
required technical conditions for the asymptotic result.

(H1) The bandwidth h satisfies lim
n→∞

nh2

log n
= +∞ and lim

n→∞
nh6

log n
= 0.

(H2) The kernel K(·) is symmetric and non-negative function. Furthermore, for
γ = 2, 3,
(i)
∫

|t|γK(t)dt < ∞,

(ii)
∫

|t|γK2(t)dt < ∞.
(H3) The density function f(·) is continuously differentiable.

(H4) The functions ϕℓ(·) =
∫

t−ℓ

G(t)
fX,T (·, t)dt, for ℓ = 2, 3, 4, are continuously differ-

entiable.
(H5) The functions rℓ(·), for ℓ = 1, 2, are continuously differentiable.
(H6) The functions mℓ(·), for ℓ = 1, 2, are twice continuously differentiable.

Comments on the assumptions: The assumption (H1) concerns the bandwidth
and is very common in nonparametric estimation. The assumption (H2) regards the
Kernel K and are needed to obtain the rate of convergence of the bias (of order two)
and the variance. Analogous assumptions on the kernel has been also made by [12].
The assumption (H3) deals with the density function f(·). The assumptions (H4), (H5)
and (H6) are regularity conditions for the functions ϕℓ(·), rℓ(·) and mℓ(·), for ℓ = 1, 2,
respectively.

Theorem 3.1. Under assumptions (H1)–(H6), for n large enough, we have

sup
x∈C

|m̂LLRER(x) − mRER(x)| = O
(
h2)+ Oa.s.

(√
log n

nh2

)
.
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The proof of Theorem 3.1 is made up on the following decomposition:

m̂LLRER(x) − mRER(x) = 1
r̂2(x)

{
r̂1(x) − r̃1(x) + r̃1(x) − E[r̃1(x)] + E[r̃1(x)]

− m1(x)m2(x) + mRER(x){m2
2(x) − E[r̃2(x)]

+ E[r̃2(x)] − r̃2(x) + r̃2(x) − r̂2(x)}
}

.

Remark that by assumption (H6), there exists η > 0 such that inf
x∈C

|m2(x)| = η. Then,
by a triangle inequality, we have

sup
x∈C

∣∣m̂LLRER(x) − mRER(x)
∣∣

≤ 1
η2 − sup

x∈C

∣∣r̂2(x) − m2
2(x)

∣∣
{

sup
x∈C

∣∣r̂1(x) − r̃1(x)
∣∣

+ sup
x∈C

∣∣r̃1(x) − E[r̃1(x)]
∣∣+ sup

x∈C

∣∣E[r̃1(x)] − m1(x)m2(x)
∣∣

+ sup
x∈C

∣∣mRER(x)
∣∣
{

sup
x∈C

∣∣E[r̃2(x)] − m2
2(x)

∣∣

+ sup
x∈C

∣∣r̃2(x) − E[r̃2(x)]
∣∣+ sup

x∈C

∣∣r̂2(x) − r̃2(x)
∣∣
}}

.

The proof will be achieved with the following propositions.

Proposition 3.2. Under assumptions (H1), (H2), (H4) and (H5), for ℓ = 1, 2 and
n large enough, we have

sup
x∈C

|r̂ℓ(x) − r̃ℓ(x)| = Oa.s.

(√
log log n

n

)
.

Proposition 3.3. Under assumptions (H1), (H2), (H4) and (H5), for ℓ = 1, 2 and
n large enough, we have

sup
x∈C

∣∣r̃ℓ(x) − E[r̃ℓ(x)]
∣∣ = Oa.s.

(√
log n

nh2

)
.

Proposition 3.4. Under assumptions (H2)(i), (H3) and (H6), for ℓ = 1, 2 and n large
enough, we have

sup
x∈C

|E[r̃ℓ(x)] − mℓ(x)m2(x)| = O
(
h2) .
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Remark 3.5. In the simulation part, we will compare the new approach to the
estimator of the classical regression (CR) function given by (1.1) using the LL approach
(LLR for “local linear regression”) defined in [3] by

m̂LLR(x) :=

n∑

i,j=1
vi,j(x)T̂j

n∑

i,j=1
vi,j(x)

, (3.1)

where

vi,j(x) = (Xi − x) ((Xi − x) − (Xj − x)) Kh (Xi − x) Kh (Xj − x) ,

and T̂ = T̂ −ℓ for ℓ = −1.
The CR function estimator using the kernel method has been defined in [17] by

m̂CR(x) = Ŝ−1,0(x)
f̂(x)

, (3.2)

where for γ = 0 and ℓ = −1, Ŝℓ,γ(·) is given in (2.12) and f̂(·) is the marginal density
function estimator defined by [29]. In the case of complete data, (3.2) has been defined
by [25] and [31]. In addition, we can derive the RER function estimator using the
kernel method defined in [22] by

m̂RER(x) = Ŝ1,0(x)
Ŝ2,0(x)

, (3.3)

where for γ = 0 and ℓ = 1, 2, Ŝℓ,γ(·) is given in (2.12).

The optimal bandwidth: The main idea of the bandwidth choice is the cross-vali-
dation method, which chooses h by minimizing:

CVCR(x) = 1
n − 1

n∑

i=1

(
Yi − m̂−i

CR(x)
)2

,

CVLLR(x) = 1
n − 1

n∑

i=1

(
Yi − m̂−i

LLR(x)
)2

,

CVRER(x) = 1
n − 1

n∑

i=1

(
Yi − m̂−i

RER(x)
Yi

)2

,

CVLLRER(x) = 1
n − 1

n∑

i=1

(
Yi − m̂−i

LLRER(x)
Yi

)2

,

(3.4)

where m̂−i
CR(·), m̂−i

LLR(·), m̂−i
RER(·) and m̂−i

LLRER(·) are CR, LLR, RER and LLRER
estimators respectively defined in (3.2), (3.1), (3.3) and (2.8) respectively without
the i-th observation (Xi, Yi, δi).
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4. NUMERICAL STUDY

To evaluate the quality of this method, we perform several simulations of the pro-
posed estimator (2.8) with different levels of censoring and outliers in data. For that,
we generate the data as follows:

Inputs: Generate n iid {Xi ⇝ W(1, 1), Ci ⇝ exp(λ) and εi ⇝ N (0, 0.2)}, for
1 ≤ i ≤ n, where λ is a constant that adjusts the censoring percentage (C.P.).
Step 1. Calculate the interest variable according to the two following models:

Model 0 (M0): Ti = 2Xi + 1 + εi,

Model 1 (M1): Ti = 3 + sin(Xi) + εi.

Step 2. Determinate the observed variable Yi = min(Ti, Ci) and the corresponding
indicator δi.

Step 2′: For 1 ≤ j ≤ n
20 , we consider i = 20×j and multiply Yi by a multiplicative

coefficient (M.C.) that we vary to create the outlier effect.
Step 3. Calculate the KM estimator from (2.6) and compute the synthetic data{

T̂ −ℓ
i , 1 ≤ i ≤ n

}
for ℓ = 1, 2 from (2.7).

Step 4. Calculate the kernel K as a standard Gaussian function and we select the
bandwidth from a sequence of h ∈ [0.01, 2] by the cross-validation method (see
the optimal bandwidth in Section 3).

Ouputs: Compute the LLRER estimator from (2.8) for x ∈ [1, 4] and the optimal
bandwidth h⋆.

In the following figures, the solid line represent the theoretical curve. Moreover, for
each figure, we specify the optimal bandwidth h⋆ for all the estimators considered in
the study.

4.1. PERFORMANCE OF THE LLRER

Figure 1 represents a test of the effectiveness of the LLRER estimator under the linear
model (M0). We plot the true curve together with the LLRER estimator curve. From
Figure 1a, we can see that the goodness of fit to the theoretical curve improves as the
sample size increases. In Figure 1b, we fix the sample size and vary the C.P. We observe
that the LLRER estimator quality is poorly affected by the percentage of censored
data. Finally, in order to assess the robustness to outliers of our new estimator, we
generate data as in Step 2′. From Figure 1c, we can observe that the quality of fit
remains consistent even when the value of M.C. increases. For each curve, we specify
the h⋆ calculate according to equations (3.4).
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Fig. 1. Performance of the LLRER estimator for (M0): a) Sample size effect for C.P. ≈ 25%,
b) Censoring effect for n = 400, c) Outliers effect for n = 400 and C.P. ≈ 60%

4.2. NONLINEAR FUNCTIONS

It is important in the nonparametric framework to show that whatever the chosen
model, the estimator remains stable. In this subsection, we consider the non linear
models (M1). We consider two other non-linear functions: exponential and quadratic
models given by T = 0.8 exp (X) + ε and T = 0.9X2 + 5

2 + ε respectively. The results
are similar to those of (M1). Therefore, we show below only the results of (M1).
We evaluate the performance of the LLRER estimator according to the presence of
censorship and outliers in data. Figures 2a show as the censoring rate increases, the
LLRER curve deviates from the true one and similarly when we increase the M.C.
(see Figure 2b). Thus, the quality of the fit is as good as in the linear case (M0).

4.3. COMPARISON TO OTHER KERNEL ESTIMATORS

In this subsection, we compare our estimator to CR, LLR and RER estimators in terms
of censoring rate and outliers effect. We note the following remarks. Figure 3 shows an
improvement of the LLRER estimator over the CR, LLR and RER estimators near
the right tail where the data points are sparse and mostly uncensored.
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Fig. 2. Performance of the LLRER estimator for (M1): a) censoring effect for n = 400, b)
outliers effect for n = 400 and C.P.≈ 34
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Fig. 3. Comparison of the CR, LLR and RER to LLRER in terms of censoring effect for
(M0) with n = 400 and C.P.≈ 13, 40 and 69%, respectively
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We note the instability of the estimators CR, LLR and RER when the censoring
rate increases. We indicate the value of the optimal bandwidth for each estimator
calculated from the equations (3.4). Then, the LLRER estimator is much more robust
to censoring than the CR, LLR and RER estimators.
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Fig. 4. Comparison of the CR, LLR and RER to LLRER in terms of outliers effect for (M0)
with n = 400, C.P. ≈ 42.5% and M.C. = 10, 40 and 80, respectively

Figure 4 is a comparison of estimators when the data contains outliers (generated
as in Step 2′). As expected, in presence of outliers, the LLRER estimator performs
better than the CR and LLR estimators. Concerning the comparison between RER
and LLRER estimators, we can see that both are resistant to outliers, but the LLRER
performs better due to the high censoring rate. To conclude, in the presence of censoring
and outliers separately or combined, the new estimator obtained by mixing the LL
and RER methods is much more efficient compared to other kernel estimators existing
in the literature.
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Our purpose is to compare the mean square error (MSE) of the LLRER estimator
with the CR, RER and LLR estimators respectively which are defined as:

MSECR = 1
n

n∑

i=1
(mCR(xi) − m̂CR(xi))2

,

MSELLR = 1
n

n∑

i=1
(mCR(xi) − m̂LLR(xi))2

,

MSERER = 1
n

n∑

i=1
(mRER(xi) − m̂RER(xi))2

,

MSELLRER = 1
n

n∑

i=1
(mRER(xi) − m̂LLRER(xi))2

.

In Table 1, we can see that the MSEs decrease as the sample size increases compared
to the CR, LLR and RER estimators. The proposed method performs globally well
even when the C.P. and the M.C. are large. We note that the RER estimator remains
stable in the presence of strong outliers and is sensitive in the presence of censoring.
Comparing now between CR and LLR estimators. The CR estimator is more resistant
to censoring and outliers in data.

Table 1
Comparative table of MSE for (M0)

n C.P.≈ % M.C. CR LLR RER LLRER
10 0.1984 2.8510 0.0247 0.0021

10 40 16.8018 23.8393 0.5098 0.0044
80 339.2484 2.0200 · 104 0.4770 0.0051
10 0.1506 111.4210 0.0903 0.0041

100 40 40 526.6807 1.2169 · 104 0.3992 0.0123
80 1.3097 · 104 1.0922 · 104 0.6686 0.0901
10 4.5205 17.0810 1.3934 0.3134

80 40 11.5675 36.8406 2.0637 0.5295
80 4.4740 · 104 3.6106 · 105 7.0942 0.6426
10 0.0757 5.9148 0.0070 0.0052

10 40 15.6419 106.4302 0.0140 1.5495 · 10−4

80 128.8892 539.5578 0.0191 2.4732 · 10−4

10 0.4938 0.9962 0.0226 2.6819 · 10−5

800 40 40 26.2118 320.5188 0.0447 1.1116 · 10−4

80 306.3905 379.6419 0.0678 4.6621 · 10−4

10 5.4846 7.5194 0.9469 0.0013
80 40 7.8674 11.5200 1.0250 0.0088

80 1.5028 · 103 1.0530 · 104 2.2704 0.0293
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4.4. EXPERIMENTAL PREDICTION

In this part, we evaluate the performance of the LLRER predictor and compared its
performance to those of the CR, LLR and RER predictors for the same generated
data set. For that, we consider n = 400 observations generated as in Step 1 and we
consider the model (M0). The n-sample was then randomly split into two subsets:
a training sample of size n⋆ = 350 is used to calculate the estimators and a test sample
of size n − n⋆ is used to verify the goodness of the predictions. The kernel and the
optimal bandwidth are chosen as in Step 4. Note that, for the sake of brevity, we
restrict ourselves to C.P. ≈ 41%.

In Figure 5, predicted values are plotted against true values. Please notice that,
we eliminate the censored data from the predicted values.

The LLRER method seems to improve the quality of prediction compared to the
CR, LLR and RER estimators. An interesting fact can be seen in Figure 5 which is
the small difference between the predicted values obtained by the RER and LLRER
estimators. We conclude that the LLRER estimator is more efficient and more precise
compared to other kernel predictors.
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Fig. 5. Performance of the LLRER predictor in comparison to CR, LLR and RER predictors
for (M0)

4.5. REAL DATA EXAMPLE:
DEATH TIMES OF KIDNEY TRANSPLANT PATIENTS

In this part, we analyze a real data set to illustrate the efficiency of the LLRER in
presence of censoring data. Then, we perform predictions using our approach which
we compare with CR, LLR and RER approaches.
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The data consists on the time to death of n = 863 kidney transplant patients
available on [23] web site. All patients had their transplant performed at The Ohio
State University Transplant Center during the period 1982–1992. The maximum
follow-up time for this study was 9.47 years. Patients were censored if they moved
from Columbus (lost to follow-up) or if they were alive on June 30, 1992. The data set
provides information on the gender (male/female), age (in years) at the time of the
transplantation and it is also known whether a survival time was right censored or
not. The general rate of censoring is approximately equal to 84%.

The time variable viewed as most important is time since the transplantation. We
consider the link between the survival time (as a response variable) and the age at the
moment of the transplantation (as a conditioning variable). A similar procedure as
the experimental prediction is now applied to the kidney transplant patients data in
order to compare the prediction performances of the LLRER estimator to CR, LLR,
RER estimators. Hence, n⋆ = 763 data points were randomly selected as training data,
denoted as (Xi, Yi, δi), i = 1, . . . , n⋆ and the data points remaining were treated as
testing data, denoted as (Xi, Yi, δi), i = n⋆ + 1, . . . , n. The bandwidth and the kernel
are taken as in Step 4. Note that, we eliminate the censoring data from the predicted
values (i.e. if for any n⋆ + 1 ≤ i ≤ n the observed variable Yi = Ci, we remove the
observation Yi from the predicted values).

We can observe from Figure 6 that the predictions resulting from our approach
are superimposed on the true values even if the level of censoring is very high.
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Fig. 6. Performance of the LLRER predictor in comparison to CR, LLR and RER predictors

In addition, we remark from that the CR, LLR predictors are less effective compared
to the LLRER predictor. We can notice that there are a few predicted data points
that match with the true values and that the majority of the predicted values are
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very far away. Hence, the proposed predictor shows an improvement over the CR
and LLR estimates but we can not see a really difference between RER and LLRER
performances in term of prediction.

5. PROOFS AND AUXILIARY RESULTS

Proof. To deal with Proposition 3.2, we use the following decomposition:

r̂ℓ(x) − r̃ℓ(x) =
(

Ŝ2,2(x)Ŝℓ,0(x) − S̃2,2(x)S̃ℓ,0(x)
)

−
(

Ŝ2,1(x)Ŝℓ,1(x) − S̃2,1(x)S̃ℓ,1(x)
)

=: Bℓ,1(x) − Bℓ,2(x).

On the one hand, for ℓ = 1, 2, we get

Bℓ,1(x) =
(

Ŝ2,2(x) − S̃2,2(x)
)(

Ŝℓ,0(x) − S̃ℓ,0(x)
)

+
(

S̃ℓ,0(x) − E[S̃ℓ,0(x)]
)(

Ŝ2,2(x) − S̃2,2(x)
)

+ E[S̃ℓ,0(x)]
(

Ŝ2,2(x) − S̃2,2(x)
)

+
(

S̃2,2(x) − E[S̃2,2(x)]
)(

Ŝℓ,0(x) − S̃ℓ,0(x)
)

+ E[S̃2,2(x)]
(

Ŝℓ,0(x) − S̃ℓ,0(x)
)

.

(5.1)

On the other hand, for ℓ = 1, 2, we get

Bℓ,2(x) =
(

Ŝ2,1(x) − S̃2,1(x)
)(

Ŝℓ,1(x) − S̃ℓ,1(x)
)

+
(

S̃2,1(x) − E[S̃2,1(x)]
)(

Ŝℓ,1(x) − S̃ℓ,1(x)
)

+ E[S̃2,1(x)]
(

Ŝℓ,1(x) − S̃ℓ,1(x)
)

+
(

S̃ℓ,1(x) − E[S̃ℓ,1(x)]
)(

Ŝ2,1(x) − S̃2,1(x)
)

+ E[S̃ℓ,1(x)]
(

Ŝ2,1(x) − S̃2,1(x)
)

.

(5.2)

It remains to study each term of the decomposition (5.1) and (5.2). For this, we will
state and proof the following three Lemmas 5.1–5.3.

Lemma 5.1. Under assumptions (H1), (H2) and (H4), for ℓ = 1, 2, γ = 0, ℓ and
n large enough, we have

sup
x∈C

∣∣∣S̃ℓ,γ(x) − E
[
S̃ℓ,γ(x)

]∣∣∣ = Oa.s.

(√
log n

nh2−2γ

)
.
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Proof. Let us consider the i.i.d sequence (X1, Y1, δ1), . . . , (Xn, Yn, δn) and define for
ℓ = 1, 2, γ = 0, 2 and n ≥ 1

Φγ
n =

{
θγ

x : R × R × {0, 1} → R | θγ
x(u, y, δ) = δy−ℓ

nh G(y)
(u − x)γKh(u − x), x ∈ C

}
.

By Lemma 3b in [15], Φγ
n is the Vapnik–Cervonenkis (V-C) class of measurable

functions. Now, for γ = 1, we define

Φ1
n =

{
θ1

x : R × R × {0, 1} → R | θ1
x(u, y, δ) = δy−ℓ

nh G(y)
(u − x)Kh(u − x), x ∈ C

}
.

Let for ℓ = 1, 2

θ1
x,1(u, y, δ) = δy−ℓ

nh G(y)
(u − x + h)Kh(u − x) and θ1

x,2(u, y, δ) = δy−ℓ

n G(y)
Kh(u − x).

Obviously, we have θ1
x(u, y, δ) = θ1

x,1(u, y, δ)−θ1
x,2(u, y, δ) which is a difference between

two measurable functions. Then, by Lemma 3c in [15] θ1
x is also V-C class of measurable

functions. These are uniformly bounded with respective envelopes Θ = C hγ−1∥K∥∞
n G(τ) .

On the one hand, under the assumption (H2) (i), for ℓ = 1, 2 and γ = 0, ℓ, we get

sup
x∈C

|θγ
x(X1, Y1, δ1)| ≤ hγ

nhG(τ)
∥K∥∞ = hγ−1

n
c1 =: Un

with c1 = ∥K∥∞
G(τ) . On the other hand, using the conditional expectation property,

we have

E
[
θ2γ

x (X1, Y1, δ1)
]

= 1
n2h2E

[
δ1Y −2ℓ

1

G
2(Y1)

(X1 − x)2γK2
h(X1 − x)

]

= 1
n2h2E

[
(X1 − x)2γK2

h(X1 − x)E
[

T −2ℓ
1

G(T1)
∣∣X1

]]

= 1
n2h2

∫
(u − x)2γK2

h(u − x)
∫

t−2ℓ

G(t)
fT |X(t|u)dtf(u)du

= 1
n2h2

∫
(u − x)2γK2

h(u − x)
∫

t−2ℓ

G(t)
fX,T (u, t)dtdu

= 1
n2h2

∫
(u − x)2γK2

h(u − x)ϕℓ(u)du.

Hence, under (H2)(i) and (H4) for ℓ = 2, 4 and γ = 0, 1, 2, we obtain

sup
x∈C

|V ar [θγ
x(X1, Y1, δ1)]| ≤ sup

x∈C
E
∣∣[θ2γ

x (X1, Y1, δ1)
]∣∣

≤ h2γ∥K∥2
∞∥ϕℓ∥∞

n2 h2 = h2γ−2

n2 c2 =: σ2
n
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with c2 = ∥K∥2
∞∥ϕℓ∥∞ and σn ≤ Un for n large enough. Now applying Talagrand’s

inequality (see Proposition 2.2 in [16]) there exist three positive constants C1, C2

and C3, with t ≥ C1

√
log n

nh2−2γ
for γ = 0, 1, 2, we have

P

[
sup

θγ
x∈Φγ

n

∣∣∣∣∣
n∑

i=1
(θγ

x(Xi, Yi, δi) − E [θγ
x(Xi, Yi, δi)])

∣∣∣∣∣ > C1

√
log n

nh2−2γ

]

≤ C2 exp


−

C1

√
log n

nh2−2γ

C2 c1
hγ−1

n

log


1 +

C1

√
log n

nh2−2γ c1
hγ−1

n

C2

(√
n hγ−1

n

√
c2 + c1

hγ−1

n

√
log C3

c1√
c2

)2





 ,

and using log(1 + x) ≈ x (for x → 0), the right-hand of the last equation becomes
an order of

C2 exp


−C1

C2

√
n log n

c1
×

C1

√
log n

nh2−2γ c1
hγ−1

n

C2n h2γ−2

n2 c2


 = C2n

− C2
1

C2
2 c2

which by an appropriate choice of the constants C1, C2 and c2, can be made O(n−3/2).
The latter is a general term of summable series and by Borel-Cantelli’s Lemma
we conclude the proof of Lemma 5.1.

Lemma 5.2. Under assumptions (H2)(i) and (H5), for ℓ = 1, 2, γ = 0, ℓ and n large
enough, we have

sup
x∈C

∣∣∣E
[
S̃ℓ,γ(x)

]∣∣∣ = O (hγ) .

Proof. Using the conditional expectation property, a change of variable for ℓ = 1, 2
and γ = 0, ℓ, we have

E
[
S̃ℓ,γ(x)

]
= 1

nh
E

[
n∑

i=1
T̃ −ℓ

i (Xi − x)γKh(Xi − x)
]

= h−1E
[
(X1 − x)γKh(X1 − x)E

[
T̃ −ℓ

1 |X1

]]

= h−1
∫

(u − x)γKh(u − x)mℓ(u)f(u)du

= h−1
∫

(u − x)γKh(u − x)rℓ(u)du

= hγ

∫
vγK(v)rℓ(x + vh)dv.

Using the first order Taylor expansion and under assumptions (H2)(i) and (H5), for
ℓ = 1, 2 and γ = 0, ℓ, we get

sup
x∈C

∣∣∣E[S̃ℓ,γ(x)]
∣∣∣ ≤ hγ sup

x∈C
|rℓ(x)|

∫
|v|γK(v)dv + hγ+1 sup

x∈C
|r′

ℓ(x)|
∫

|v|γ+1K(v)dv

= O (hγ) .
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Lemma 5.3. Under assumptions (H1), (H2), (H4) and (H5), for ℓ = 1, 2, γ = 0, ℓ,
and n large enough, we have

sup
x∈C

∣∣∣Ŝℓ,γ(x) − S̃ℓ,γ(x)
∣∣∣ = Oa.s.

(√
log log n

n

)
.

Proof. For ℓ = 1, 2, γ = 0, ℓ, we have

sup
x∈C

∣∣Ŝℓ,γ(x) − S̃ℓ,γ(x)
∣∣

= sup
x∈C

∣∣∣∣∣
1

nh

n∑

i=1
(Xi − x)γKh(Xi − x)

(
T̂ −ℓ

i − T̃ −ℓ
i

)∣∣∣∣∣

= sup
x∈C

∣∣∣∣∣
1

nh

n∑

i=1
δiY

−ℓ
i (Xi − x)γKh(Xi − x)

(
G(Yi) − Gn(Yi)

Gn(Yi)G(Yi)

)∣∣∣∣∣

≤ 1
G

2(τ)
sup
t≤τ

∣∣Gn(t) − G(t)
∣∣× sup

x∈C

∣∣∣∣∣
1

nh

n∑

i=1
T −ℓ

i (Xi − x)γKh(Xi − x)
∣∣∣∣∣

=: C sup
t≤τ

|D1(t)| × sup
x∈C

|D2(x)| .

From Lemma 4.2 in [9], the right-hand term is equal to

sup
t≤τ

|D1(t)| = Oa.s.

(√
log log n

n

)
as n → ∞. (5.3)

Now, concerning the second term, for ℓ = 1, 2 and γ = 0, ℓ, we write

D2(x) = 1
h

{
1
n

n∑

i=1
T −ℓ

i (Xi − x)γKh(Xi − x) − E
[
T −ℓ

1 (X1 − x)γKh(X1 − x)
]
}

+ E
[
h−1T −ℓ

1 (X1 − x)γKh(X1 − x)
]

=: D2,1(x) + D2,2(x).

On the one hand, D2,1(·) can be obtained analogously as Lemma 5.1 when the variable
interest T is completely observed (i.e. C = +∞). Then, for γ = 0, 1, 2, and n large
enough, we obtain

sup
x∈C

|D2,1(x)| = Oa.s.

(√
log n

nh2−2γ

)
. (5.4)
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On the other hand, we deal with D2,2(·) as in lemma 5.2. Hence, using the conditional
expectation property, a change of variable and the Taylor expansion, for ℓ = 1, 2 and
γ = 0, ℓ, we have

D2,2(x) = h−1E
[
(X1 − x)γKh(X1 − x)E

[
T −ℓ

1 |X1
]]

= h−1
∫

(u − x)γKh(u − x)mℓ(u)f(u)du

= h−1
∫

(vh)γK(v)rℓ(x + vh)hdv

= hγrℓ(x)
∫

vγK(v)dv + hγ+1
∫

vγ+1K(v)r′
ℓ(ξ)dv.

Under (H2)(i) and (H5), we get

sup
x∈C

|D2,2(x)| = O
(

hγ
)

. (5.5)

Combining the results in (5.3), (5.4) and (5.5) achieve the proof of the Lemma 5.3.

Now, combining Lemma 5.1 with Lemma 5.3 according to the decomposition (5.1)
and (5.2), we conclude the proof of Proposition 3.2.

Proof. To deal with Proposition 3.3, we consider the following decomposition for
ℓ = 1, 2:

r̃ℓ(x) − E[r̃ℓ(x)] =
{

S̃2,2(x)S̃ℓ,0(x) − E
[
S̃2,2(x)S̃ℓ,0(x)

]}

−
{

S̃2,1(x)S̃ℓ,1(x) − E
[
S̃2,1(x)S̃ℓ,1(x)

]}

=: Eℓ,1(x) − Eℓ,2(x).
On the one hand, for ℓ = 1, 2, we have

Eℓ,1(x) =
(

S̃2,2(x) − E
[
S̃2,2(x)

])(
S̃ℓ,0(x) − E

[
S̃ℓ,0(x)

])
+ E

[
S̃2,2(x)

]

×
(

S̃ℓ,0(x) − E
[
S̃ℓ,0(x)

])
+ E

[
S̃ℓ,0(x)

] (
S̃2,2(x) − E

[
S̃2,2(x)

])

− Cov
(

S̃ℓ,0(x), S̃2,2(x)
)

.

(5.6)

On the other hand, for ℓ = 1, 2, we have

Eℓ,2(x) =
(

S̃2,1(x) − E
[
S̃2,1(x)

])(
S̃ℓ,1(x) − E

[
S̃ℓ,1(x)

])
+ E

[
S̃2,1(x)

]

×
(

S̃ℓ,1(x) − E
[
S̃ℓ,1(x)

])
+ E

[
S̃ℓ,1(x)

] (
S̃2,1(x) − E

[
S̃2,1(x)

])

− Cov
(

S̃2,1(x), S̃ℓ,1(x)
)

.

(5.7)

It remains to study each term of the decomposition (5.6) and (5.7). The majority of
the terms have already been dealt with in lemmas 5.1 and 5.2. The two terms that
remain to be treated are the covariance terms that are the purpose of the two following
lemmas.
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Lemma 5.4. Under assumptions (H1), (H2), (H4) and (H5), for ℓ = 1, 2 and n large
enough, we have

sup
x∈C

∣∣∣Cov
(

S̃ℓ,0(x), S̃2,2(x)
)∣∣∣ = O

(√
log n

nh2

)
.

Proof. By definition, for ℓ = 1, 2, we have

Cov
(

S̃ℓ,0(x), S̃2,2(x)
)

= E
[
S̃ℓ,0(x)S̃2,2(x)

]
− E

[
S̃ℓ,0(x)

]
E
[
S̃2,2(x)

]

=: ∆1(x) − ∆2(x)∆3(x).

From this statement we proceed as follows. We first treat ∆1(x), for ℓ = 1, 2, we have

∆1(x) = 1
(nh)2E




n∑

i,j=1
T̃ −ℓ

i T̃ −2
j (Xj − x)2Kh(Xi − x)Kh(Xj − x)




= 1
nh2E

[
δ1Y −ℓ−2

1

G
2(Y1)

(X1 − x)2K2
h(X1 − x)

]

+ (n − 1)
nh2 E

[
T̃ −ℓ

1 T̃ −2
2 (X2 − x)2Kh(X1 − x)Kh(X2 − x)

]

=: ∆1,1(x) + ∆1,2(x).

On the one hand, we deal with ∆1,1(·). Using the conditional expectation property
and a change of variable, for ℓ = 1, 2, we have

∆1,1(x) = 1
nh2E

[
(X1 − x)2K2

h(X1 − x)E
[

δ1Y −ℓ−2
1

G
2(Y1)

∣∣∣X1

]]

= 1
nh2

∫
(u − x)2K2

h(u − x)
∫

t−ℓ−2

G(t)
fT1|X1(t|u)dtf(u)du

= 1
nh2

∫
(u − x)2K2

h(u − x)ϕℓ(u)du

= h

n

∫
v2K2(v)ϕℓ(x + vh)dv.

Using the Taylor expansion and under the assumptions (H2)(ii) and (H4), for ℓ = 3, 4
and n large enough, we have

sup
x∈C

|∆1,1(x)| ≤ h

n
sup
x∈C

|ϕℓ(x)|
∫

v2K2(v)dv + h2

n
sup
x∈C

|ϕ′
ℓ(x)|

∫
|v|3K2(v)dv = O

(
h

n

)
.

(5.8)
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Now, we deal with ∆1,2(·). Using the same arguments as for ∆1,1(·), we get

∆1,2(x) = (n − 1)
nh2 E

[
(X2 − x)2Kh(X1 − x)Kh(X2 − x)E

[
T̃ −ℓ

1 T̃ −2
2
∣∣X1, X2

]]

= (n − 1)
nh2

∫ ∫
(v − x)2Kh(u − x)Kh(v − x)mℓ(u)m2(v)f(u)f(v)dudv

= (n − 1)
nh2

∫ ∫
(v − x)2Kh(u − x)Kh(v − x)rℓ(u)r2(v)dudv

= (n − 1)h2

n

∫ ∫
s2K(t)K(s)rℓ(x + th)r2(x + sh)dtds.

By the first order Taylor expansion for rℓ(·) and under (H2)(i) and (H5), for ℓ = 1, 2
and n large enough, we obtain

sup
x∈C

|∆1,2(x)| ≤ (n − 1)h2

n
sup
x∈C

|rℓ(x)| sup
x∈C

|r2(x)|
∫

s2K(s)ds

= O
(
h2) .

(5.9)

Combining the results in (5.8) and (5.9) we get for n large enough

sup
x∈C

|∆1(x)| = O
(
h2) . (5.10)

On the other hand, from Lemma 5.2 for different values of ℓ and γ, we get

sup
x∈C

|∆2(x)| = O (1) and sup
x∈C

|∆3(x)| = O
(
h2) . (5.11)

Finally, from (5.10) and (5.11), for ℓ = 1, 2 and n large enough, we get

sup
x∈C

∣∣∣Cov
(

S̃ℓ,0(x), S̃2,2(x)
)∣∣∣ = O

(
h2) .

By using the second part of the assumption (H1), the latter is negligible with respect

to
√

log n

nh2 .

Lemma 5.5. Under assumptions (H1), (H2), (H4) and (H5), for ℓ = 1, 2 and n large
enough, we have

sup
x∈C

∣∣∣Cov
(

S̃ℓ,1(x), S̃2,1(x)
)∣∣∣ = O

(√
log n

nh2

)
.

Proof. In the same way as in Lemma 5.4, for ℓ = 1, 2, write

Cov
(

S̃ℓ,1(x), S̃2,1(x)
)

= E
[
S̃ℓ,1(x)S̃2,1(x)

]
− E

[
S̃ℓ,1(x)

]
E
[
S̃2,1(x)

]

=: Γ1(x) − Γ2(x)Γ3(x).
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On the one hand, from Lemma 5.2 for different values of γ and ℓ, we have

sup
x∈C

|Γ2(x)| = O (h) and sup
x∈C

|Γ3(x)| = O (h) . (5.12)

On the other hand, we deal with Γ1(·). For ℓ = 1, 2, we have

Γ1(x) = 1
(nh)2E




n∑

i,j=1
T̃ −ℓ

i T̃ −2
j (Xi − x)(Xj − x)Kh(Xi − x)Kh(Xj − x)




= 1
nh2E

[
δ1Y −ℓ−2

1

G
2(Y1)

(X1 − x)2K2
h(X1 − x)

]

+ (n − 1)
nh2 E

[
T̃ −ℓ

1 T̃ −2
2 (X1 − x)(X2 − x)Kh(X1 − x)Kh(X2 − x)

]

=: Γ1,1(x) + Γ1,2(x).

Concerning Γ1,1(·), from (5.8) we get

sup
x∈C

|Γ1,1(x)| = sup
x∈C

|∆1,1(x)| = O
(

h

n

)
. (5.13)

Now, for Γ1,2(·), by using the conditional expectation property and a change of variable,
for ℓ = 1, 2, we have

Γ1,2(x) = (n − 1)
nh2 E

[
(X1 − x)(X2 − x)Kh(X1 − x)Kh(X2 − x)E

[
T̃ −ℓ

1 T̃ −2
2 |X1, X2

]]

= (n − 1)
nh2

∫ ∫
(u − x)(v − x)Kh(u − x)Kh(v − x)mℓ(u)m2(v)f(u)f(v)dudv

= (n − 1)
nh2

∫ ∫
(u − x)(v − x)Kh(u − x)Kh(v − x)rℓ(u)r2(v)dudv

= (n − 1)h2

n

∫ ∫
tsK(t)K(s)rℓ(x + th)r2(x + sh)dtds.

Using the first order Taylor expansion and under the assumptions (H2)(i) and (H5),
for ℓ = 1, 2 and n large enough, we obtain

sup
x∈C

|Γ1,2(x)| ≤ (n − 1)h4

n
sup
x∈C

|r′
ℓ(x)| sup

x∈C
|r′

2(x)|
∫ ∫

t2s2K(t)K(s)dtds = O
(
h4) .

(5.14)
Finally, combining (5.12), (5.13) and (5.14), for ℓ = 1, 2 and n large enough, we obtain

sup
x∈C

∣∣∣Cov
(

S̃ℓ,1(x), S̃2,1(x)
)∣∣∣ = O

(
h2) .

By the last part of (H1), the later is negligible with respect to
√

log n

nh2 .
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Hence, Lemmas 5.1, 5.2, 5.4 and 5.5 according to the decomposition (5.6) and (5.7)
conclude the proof of Proposition 3.3.

Proof. To deal with the bias term (see Proposition 3.4), we will use the below normal-
ization. Notice that, for ℓ = 1, 2, (2.4) can be written as

r̃ℓ(x) = 1
n(n − 1)h2E [v1,2(x)]

n∑

i,i=1
i̸=j

w̃ℓ
i,j(x)

where

v1,2(x) = h−2(X1 − x) ((X1 − x) − (X2 − x)) Kh(X1 − x)Kh(X2 − x). (5.15)

First, we deal with the quantity (5.15). By a change of variable, we have

E [v1,2(x)] = h−2
∫ ∫

(u − x) ((u − x) − (v − x)) Kh(u − x)Kh(v − x)f(u)f(v)dudv

= h2
∫ ∫ (

t2 − ts
)

K(t)K(s)f(s + th)f(x + sh)dtds.

By the first order Taylor expansion and under the assumptions (H2)(i) and (H3),
we obtain

sup
x∈C

|E [v1,2(x)]| = O
(
h2) . (5.16)

Now, we come back to our main calculation of the bias term, for ℓ = 1, 2, given by

E[r̃ℓ(x)] − mℓ(x)m2(x) = 1
n(n − 1)h2E [v1,2(x)]E

[
n∑

i,j=1
i̸=j

w̃ℓ
i,j(x)

]
− mℓ(x)m2(x)

= 1
h2E [v1,2(x)]

{
E[w̃ℓ

1,2(x)] − mℓ(x)m2(x)h2E [v1,2(x)]
}

.

(5.17)

We deal with term between braces. Then, using the conditional expectation property
and a change of variable, for ℓ = 1, 2, we have

E
[
w̃ℓ

1,2(x)
]

− mℓ(x)m2(x)h2E [v1,2(x)]

= E
[
(X1 − x) ((X1 − x) − (X2 − x)) Kh(X1 − x)Kh(X2 − x)E

[
T̃ −2

1 T̃ −ℓ
2 |X1, X2

]]

− mℓ(x)m2(x)E [(X1 − x) ((X1 − x) − (X2 − x)) Kh(X1 − x)Kh(X2 − x)]

=
∫ ∫

(u − x) ((u − x) − (v − x))

× Kh(u − x)Kh(v − x)f(u)f(v) [m2(u)mℓ(v) − mℓ(x)m2(x)] dudv

= h4
∫ ∫ (

t2 − ts
)

K(t)K(s)f(x + th)

× f(x + sh) [m2(x + th)mℓ(x + sh) − mℓ(x)m2(x)] dtds.

(5.18)
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The second order Taylor expansion of the function mℓ(·) for ℓ = 1, 2 gives:

m2(x + th)mℓ(x + sh) − m2(x)mℓ(x)
= (m2(x + th) − m2(x))(mℓ(x + sh) − mℓ(x))

+ mℓ(x) (m2(x + th) − m2(x)) + m2(x) (mℓ(x + sh) − mℓ(x))

=
(

thm′
2(x) + h2t2

2 m′′
2(ξ1)

)(
shm′

ℓ(x) + h2s2

2 m′′
ℓ (ξ2)

)

+ mℓ(x)
(

thm′
2(x) + h2t2

2 m′′
2(ξ1)

)
+ m2(x)

(
shm′

ℓ(x) + h2s2

2 m′′
ℓ (ξ2)

)

= h2tsm′
2(x)m′

ℓ(x) + h3ts2

2 m′
2(x)m′′

ℓ (ξ2) + h3t2s

2 m′
ℓ(x)m′′

2(ξ2)

+ h4t2s2

4 m′′
2(ξ1)m′′

ℓ (ξ2) + thmℓ(x)m′
2(x) + h2t2

2 mℓ(x)m′′
2(ξ1)

+ shm2(x)m′
ℓ(x) + h2s2

2 m2(x)m′′
ℓ (ξ2),

(5.19)

and the first order Taylor expansion of the density function f(·) gives

f(x + ht)f(x + sh) = (f(x) + thf ′(ξ1)) (f(x) + shf ′(ξ2))
= f2(x) + shf(x)f ′(ξ2) + thf(x)f ′(ξ1) + h2stf ′(ξ1)f ′(ξ2).

(5.20)

Then, replacing (5.19) and (5.20) in (5.18) and under (H2)(i), (H3) and (H6),
for ℓ = 1, 2, we get

sup
x∈C

∣∣E
[
w̃ℓ

1,2(x)
]

− h2mℓ(x)m2(x)E [v1,2(x)]
∣∣ ≤

h6 sup
x∈C

|f2(x)| sup
x∈C

|m′
2(x)| sup

x∈C
|m′

ℓ(x)|
∫

t2s2K(t)K(s)dtds

= O
(
h6) .

(5.21)

Finally, combining the results in (5.16) and (5.21) according to (5.17), the bias term
is of order

sup
x∈C

|E[r̃ℓ(x)] − mℓ(x)m2(x)| = O
(
h2) .

Remark 5.6. We point out that even if the LL method has the advantage of reducing
the biais term, however, the combination of the two methods LL and RER has revealed
several terms that do not allow us to get a better result than what we got.
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