Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a method for expanding the working range of separation elements, where the separation is conducted through the use of inertia particles. The presented dynamic separation elements work as the automatic control system (the regulating action is the elastic energy; the regulation object is the hydraulic resistance). It was taken the first step to the engineering method development for their calculation using analytical dependences of the finite element method. The critical velocity of the gas-liquid flow was determined, that causes a divergence phenomenon of dynamic separation device elements and expressions for generalized forces for the system “gas-liquid flow is a dynamic deflection element.” Two-knot finite elements with two degrees of freedom (transverse displacement and angle of the cross-section rotation) were used for dynamic deflection elements. The given number of degrees of freedom of the mechanical system “gas-liquid flow is a dynamic deflection element” due to the consideration of the transverse deformations of the plate allows simplifying the mathematical model. It was suggested to use aerohydroplastic phenomena of dynamic non-stability of dynamic deflection elements of separating devices, analogous to the method of applying acoustic oscillations to a heterogeneous stream, for the coagulation of dispersed particles in the flow.
Czasopismo
Rocznik
Tom
Strony
art. no. 2018026
Opis fizyczny
Bibliogr. 15 poz., 1 rys.
Twórcy
autor
- Sumy State University, Department of General Mechanics and Machine Dynamics, 2 Rymskogo-Korsakova St., 40007, Sumy, Ukraine
autor
- Sumy State University, Department of Processes and Equipment of Chemical and Petroleum-Refineries, 2 Rymskogo-Korsakova St., 40007, Sumy, Ukraine
autor
- Poznań University of Technology, Department of Chemical Engineering and Equipment, Pl. M. Sklodowskiej-Curie 5, 60-965, Poznań, Poland
autor
- Sumy State University, Department of General Mechanics and Machine Dynamics, 2 Rymskogo-Korsakova St., 40007, Sumy, Ukraine
Bibliografia
- 1. O. Liaposhchenko, O. Nastenko, I. Pavlenko, The model of crossed movement and gas-liquid flow interaction with captured liquid film in the inertial-filtering separation channels, Separation and Purification Technology, 173 (2017) 240 - 243, DOI: 10.1016/j.seppur.2016.08.042.
- 2. O. O. Liaposhchenko, V. I. Sklabinskyi, V. L. Zavialov, I. V. Pavlenko, O. V. Nastenko, M. M. Demianenko, Appliance of Inertial Gas-Dynamic Separation of Gas-Dispersion Flows in the Curvilinear Convergent-Divergent Channels for Compressor Equipment Reliability Improvement, IOP Conference Series: Materials Science and Engineering, 233 (2017), DOI: https://doi.org/10.1088/1757-899X/233/1/012025.
- 3. O. O. Liaposhchenko, O. V. Nastenko, I. V. Pavlenko, et al., The method of capturing highly dispersed dropped liquid from the gas-liquid flow, Certificate of the authorship, Ukraine, No. 111039 U, B01D 45/00 (2006.01), Sumy, Sumy State University, No. u201605061, bulletin No. 20 [in Ukrainian].
- 4. O. O. Liaposhchenko, I. V. Pavlenko, M. M. Nastenko, R. Y. Usyk, M. M. Demianenko, The method of capturing highly dispersed dropped liquid from the gas-liquid flow, Certificate of the authorship, Ukraine, No. 102445 U, (2015) B01D 45/04 (2006.01), Sumy, Sumy State University, No. u201505124, bulletin No. 20 [in Ukrainian].
- 5. I. V. Pavlenko, O. O. Liaposhchenko, M. M. Demianenko, O. Y. Starynskyi, Static calculation of the dynamic deflection elements for separation devices, Journal of Engineering Sciences b, 4(2) (2017), P. B19-B24 DOI: 10.21272/jes.2017.4(2).b19.
- 6. I. V. Pavlenko, Finite element method for the problems of strength of materials and linear theory of elasticity, Sumy: Sumy State University, 2006 [in Russian].
- 7. I. V. Pavlenko, Finite element method for the problems of strength of materials and linear theory of elasticity, Sumy: Sumy State University, 2007 [in Russian].
- 8. Y. C. Fung, An introduction to the theory of aeroelasticity, Mideola, Dover publications, Inc., New York 2002.
- 9. R. Schinzinger, P. Laura, Conformal mapping, Methods and applications, Dover Publications, New York 2003.
- 10. O. Haszpra, Modelling hydroelastic vibrations, Kiado Academy, Budapest 1979.
- 11. J. Mikusinski, Operational calculus, Polish Scientific Publishers, Warsaw 2011.
- 12. P. Dyke, An introduction to Laplace transform and Fourier series, Springer Science and Business Media, New York 2014.
- 13. M. J. Lighthill, An introduction to Fourier analysis and generalized functions, Cambridge University Press, Cambridge 1958.
- 14. I. B. Karintsev, I. V. Pavlenko, Hydroaeroelasticity, Sumy State University, 2017.
- 15. D. H. Hodges, G. A. Plerce, Introduction to structural dynamics and aeroelasticity, Cambridge University Press, Cambridge 2002.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1adc593-c231-459a-a2fb-4abda002b77d