ANALITYCZNE BADANIA STRUKTURY DRUCIANEGO MATERIAŁU POROWATEGO PRZENIKALNEGO

Andrzej JAKUBOWSKI, Renata CRASTO Akademia Morska w Szczecinie

Streszczenie: Szczegóły technologii produkowania materiału porowatego przenikalnego z użyciem drutu pozwoliły przeprowadzić analityczne badania struktury nawoju drucianego oraz jego charakterystyk strukturalnych. Sprzyja to prognozowaniu ostatecznych właściwości materiału, wytwarzanego następującą obróbką deformacyjną (tzn. obciskaniem radialnym). Dzięki zorganizowanemu i regularnemu układaniu drutu, zwój w nawoju jest rozpatrywany, jako ciągła belka wieloprzesłowa, a styczność zwojów - jako współdziałanie dwóch cylindrów. Możliwość dość dokładnego zliczenia ilości kontaktów miedzyzwojowych pozwala przejść od przemieszczeń w węźle pojedynczym do wyznaczenia odkształcenia całego nawoju. Podczas badań procesów, odbywających się przy obciskaniu z uwzględnieniem geometrii nawoju i mechanicznych właściwości drutu, są obliczone charakterystyki strukturalne wyrobu. Konieczna jest określona ilość warstw nawijania, przy której możliwe jest uniknięcie zniekształcenia struktury zorganizowanej ostatecznej. Wyprowadzono uzależnienie między ciśnieniem obciskania i względną spoistością materiału, co pozwala kontrolować warunki technologiczne w trakcie nawijania drutu i uszczelniania nawoju, w celu zabezpieczenia wymaganych charakterystyk strukturalnych drucianego materiału porowatego przenikalnego.

Słowa kluczowe: drut, nawój, obciskanie radialne, styczność i ugięcie zwojów, charakterystyki strukturalne.

WPROWADZENIE

Szczególne miejsce we współczesnej technice dzięki zdolności przepuszczalności płynów i gazów zajmują wyroby z porowatych przenikalnych materiałów (PPM). Zazwyczaj takie wyroby są prezentowane przez materiały z metalowych czy ceramicznych proszków (PPMP) albo z metalowych siatek (PPMS) [1, 2]. Dla pewnej i skutecznej pracy sprzętu, konstrukcją którego jest użycie podobnych materiałów, tworzą PPM z zorganizowaną regulowaną strukturą porów.

Materiały siatkowe mają szereg istotnych przewag w porównaniu z materiałami proszkowymi (tzn. dokładną powtarzalność struktury, możliwość wahania się w szerokim zakresie porowatości i regulacji rozmiarów porów), a także posiadają plastyczność i wytrzymałość dynamiczną [2]. Jednak technologia produkowania PPMS jest bardzo pracochłonna i droga. W związku z tym, perspektywicznym kierunkiem w obszarze tworzenia nowych PPM jest opracowanie materiałów ze strukturą regulowaną zorganizowaną i wysokimi wskaźnikami właściwości eksploatacyjnych (podobnie do PPMS), lecz technologicznie tańszych.

Wydaje się możliwym produkowanie PPM z metalowego włókna ciągłego, czyli z użyciem bezpośrednio drutu (PPMD) bez wstępnego plecenia siatek. Proces wytwarzania takiego materiału zawiera ukształtowanie nawoju drucianego (ND) poprzez warstwowe

krzyżowe nawijanie drutu na oprawkę kształtującą, następnie obróbkę deformacyjną ND w warunkach obciskania radialnego (czyli uszczelniania promieniowego) bez spiekania, potrzebnego dla PPMP) [3].

Wytwarzanie PPMD jako nowego materiału wymaga badań jego charakterystyk strukturalnych, które kształtują się już w trakcie nawijania drutu, lecz ostatecznie otrzymują się poprzez obróbkę deformacyjną.

CHARAKTERYSTYKI STRUKTURALNE NAWOJU DRUCIANEGO

Nawijanie drutu (rys. 1) o średnicy *d* na walcową oprawkę o średnicy D_{opr} i roboczą długością *L* wykonuje się pod kątem β do poprzecznej płaszczyzny oprawki w *n* ilości warstw. Do nawijania każdej warstwy wykorzystuje się układanie zwojów drutu wzdłuż ND z wymaganą ilością przejść w obu kierunkach, zabezpieczając niezbędny stały odstęp (szczelinę) *s* między dwoma sąsiednimi jednokierunkowymi zwojami danej warstwy po całej długości układania *L*.

Rys. 1 Schemat zasadniczy układania zwojów drutu przy ukształtowaniu ND

Charakterystyki strukturalne (np. porowatość, jednostkowa powierzchnia porów, rozmiar porów) odnoszą się do klas geometrycznych i mogą być określone analitycznie.

Porowatość charakteryzuje wielkość pustego wewnętrznego obszaru w ciele porowatym i wyznacza się objętością próżni w jednostce objętości całego ciała [1]. Ogólny dla wszystkich materiałów wzór ma postać:

$$P = \frac{V_P}{V} = \frac{V - V_S}{V} = 1 - \frac{V_S}{V}.$$
 (1)

Dla ND ze średnicą zewnętrzną D_0 i grubością H (rys. 2) ogólna objętość jest równa:

$$V = V_0 = \frac{\pi \cdot \left(D_0^2 - D_{opr}^2\right)}{4} \cdot L = \pi \cdot H \cdot \left(D_{opr} + H\right) \cdot L .$$
⁽²⁾

Zajęta drutem objętość ND jest równa:

$$V_S = \frac{\pi \cdot d^2}{4} \cdot l_d \,. \tag{3}$$

Wykorzystywana długość drutu l_d jest sumą długości drutu we wszystkich warstwach $l_d=\sum l_i$. Wymagana dla ukształtowania *i*-ej warstwy długość l_i przy dwukierunkowym nawijaniu wyznacza się jako (rys. 2):

1) iloczyn długości zwoju w *i*-ej warstwie o średnicy D_i i ogólnej ilości zwojów w tej warstwie;

2) iloczyn długości drutu dla jednego przejścia w *i*-ej warstwie i ilości przejść w warstwie. Tzn.:

$$l_{d} = \sum_{i=1}^{n} l_{i} = \sum_{i=1}^{n} \left(\frac{\pi \cdot D_{i}}{\cos \beta} \cdot \frac{L \cdot \cos \beta}{d + s} \cdot 2 \right) = \sum_{i=1}^{n} \left(\frac{L}{\sin \beta} \cdot \frac{\pi \cdot D_{i} \cdot \sin \beta}{d + s} \cdot 2 \right) = \frac{2 \cdot \pi \cdot L}{d + s} \cdot \sum_{i=1}^{n} D_{i} = \frac{2 \cdot \pi \cdot n \cdot \left(D_{opr} + H \right)}{d + s} \cdot L .$$
(4)

Tak więc, dla ND wzór (1) z uwzględnieniem (2)–(4) ostatecznie wygląda jako:

$$P_0 = 1 - \frac{V_S}{V_0} = 1 - \frac{d^2}{D_0^2 - D_{opr}^2} \cdot \frac{l_d}{L} = 1 - \frac{2 \cdot \pi \cdot n \cdot d^2}{4 \cdot H \cdot (d+s)} = 1 - \frac{\pi \cdot d}{4 \cdot (d+s)} \approx 1 - \frac{0.8d}{d+s} \,. \tag{5}$$

Jednostkowa powierzchnia porów charakteryzuje miarę rozwiniętej wewnętrznej powierzchni ciała porowatego i wyznacza się polem powierzchni porów w jednostce objętości całego ciała [1]. Ogólny dla wszystkich materiałów wzór ma postać:

$$S_V = \frac{S_P}{V} = \frac{S_S - n_\kappa \cdot S_\kappa}{V} \,. \tag{6}$$

Dla ND polem powierzchni porów S_P jest pole bocznej powierzchni S_S wykorzystywanego drutu, ponieważ składnik, liczący ilość n_{κ} i pole S_{κ} kontaktów międzyzwojowych, dorównuje zeru. Tzn.:

$$S_P = S_S = \pi \cdot d \cdot l_{\Sigma} = \frac{\pi^2 \cdot H \cdot (D_{opr} + H)}{d + s} \cdot L .$$
(7)

Tak więc, wzór (6) z uwzględnieniem (2) i (7) ostatecznie wygląda jako:

$$S_{V0} = \frac{S_S}{V_0} = \frac{\pi}{d+s} \,. \tag{8}$$

Ten sam wynik otrzymamy, jeśli dla obliczenia jednostkowej powierzchni porów ND z uwzględnieniem wyrażenia (5) wykorzystamy formułę zastosowaną bezpośrednio do materiałów z drucianych siatek metalowych [2]:

$$S_{V0} = 4 \cdot \frac{1 - P_0}{d} = \frac{\pi}{d + s} \,. \tag{9}$$

Średni rozmiar porów ND również można wyznaczyć z uwzględnieniem wyrażenia (5), wykorzystując formułę dla materiałów z siatek metalowych [1, 2]:

$$d_{P0} = d \cdot \frac{P_0}{1 - P_0} = \frac{4}{\pi} \cdot (d + s) - d \approx 1,3 \cdot s + 0,3 \cdot d .$$
(10)

Rozmiar poru w ND odpowiada warunkowo maksymalnemu rozmiarowi kulistej cząstki, przechodzącej przez por, i w przybliżeniu dorównuje szczelinie *s* (rys. 3). Minimalna wielkość szczeliny jest związana ze szczegółami układania drutu, a mianowicie z nieuniknionym w dowolnej warstwie przesunięciem sąsiednich zwojów jednokierunkowych w miejscach bezkolizyjnego skrzyżowania zwojów przeciwnych (ΔABC na rys. 3):

Rys. 3. Schemat utworzenia oczka (poru) przy skrzyżowaniu zwojów

Wyrażenia (5), (8) i (10) opisują główne charakterystyki struktury ND i pozwalają przed obróbką deformacyjną znacznie sprecyzować prognozowanie właściwości ostatecznych PPMD.

SIŁOWE WSPÓŁDZIAŁANIE ZWOJÓW DRUTU PRZY USZCZELNIANIU NAWOJU

Na etapie promieniowego uszczelniania ND odbywa się zmniejszenie grubości nawoju do wielkości $h = H - \Delta$ (rys. 4) przez ugięcie drutu δ_u między kontaktami zwojów, wywołane siłą gnącą, oraz przez zbliżenie zwojów δ_{κ} w ich kontaktach, wywołane siłą ściskającą. Wobec tego, bezwzględne odkształcenie ND wyraża się w sposób:

$$\Delta = n \cdot \delta_{\mu} + (2 \cdot n - 1) \cdot \delta_{\kappa}. \tag{12}$$

Dość wysoka regularność kontaktów w ND pozwala przejść do rozpatrywania współdziałania zwojów drutu w pojedynczym kontakcie, a mianowicie, do współdziałania dwóch stycznych cylindrów o średnicy *d* pod kątem 2 β , obciążonych skupioną siłą ściskającą F_{κ} (rys. 5).

W stadium obciążenia plastycznego okreslone są siła ściskania i zbliżenie cylindrów [4]:

$$F_{\kappa} = \frac{2.6}{n_p^3} \cdot \delta_{\kappa}^2 \cdot \sigma_T = \frac{n_p}{n_{\delta}^2} \cdot d^2 \cdot \sigma_T; \qquad \qquad \delta_{\kappa} = \frac{0.6 \cdot n_p}{n_a \cdot n_b \cdot n_{\delta}} \cdot d = 0.6 \cdot n_p \cdot n_{\delta} \cdot \frac{F_{\kappa}}{d \cdot \sigma_T}, \qquad (13)$$

gdzie n_a , n_b , n_p , n_δ — współczynniki współpozycji cylindrów, zależące od kąta nawijania drutu β (tabela 1); σ_T — granica plastyczności materiału drutu.

β	n _a	n_b	n _ð	n_p	β	n _a	n_b	n _ð	n_p	β	n _a	n_b	n _ð	n_p
3°	9,01	0,28	0,34	0,40	10°	3,82	0,41	0,60	0,64	30°	1,49	0,72	0,94	0,94
4°	7,97	0,28	0,38	0,45	15°	2,73	0,49	0,73	0,74	40°	1,13	0,89	0,99	0,99
5°	6,63	0,31	0,43	0,49	20°	2,14	0,57	0,82	0,83	45°	1,0	1,0	1,0	1,0

Tabela 1 Współczynniki współpozycji cylindrów

Rys. 5 Model obciążenia cylindrów stycznych i schemat ich powierzchni stykowej

Analiza plastycznego odkształcenia cylindrów pozwoliła stwierdzić, iż po płynięciu materiału kontakt punktowy przyjmuje kształt eliptyczny z dużą i małą półosią (rys. 5) [4]:

$$a = \frac{0.6 \cdot n_a \cdot n_\delta \cdot F_\kappa}{d \cdot \sigma_T} = 0.9 \cdot \frac{n_a}{n_p} \cdot \delta_\kappa; \qquad b = \frac{0.6 \cdot n_b \cdot n_\delta \cdot F_\kappa}{d \cdot \sigma_T} = 0.9 \cdot \frac{n_b}{n_p} \cdot \delta_\kappa.$$
(14)

To znaczy, że pole powierzchni stykowej jest równe:

$$S_{\kappa} = \pi \cdot a \cdot b = \frac{\pi}{2} \cdot \frac{n_a \cdot n_b}{n_{\delta}} \cdot \delta_{\kappa} \cdot d = \frac{n_p}{n_{\delta}^2} \cdot d^2.$$
(15)

Dzięki zorganizowanemu układaniu drutu można również rozpatrywać zwój w dowolnej warstwie, jako ciągłą belką wieloprzęsłową o przekroju okrągłego o średnicy d, która jest obciążona skupioną siłą gnącą F_u pośrodku każdego przęsła (rys. 6). Odległość między podporami belki z uwzględnieniem (11) jest równa:

$$l = (d+s)/\sin 2\beta \approx 2 \cdot d/\sin 2\beta .$$
(16)

Wobec symetrii obciążenia i dużej ilości podpór, maksymalny moment gnący jest na podporach i pośrodku przęsła (rys. 6) [5]:

$$\left|M_{max}\right| = \frac{F_u \cdot l}{8} \,. \tag{17}$$

Rys. 6 Model i schemat obliczeniowy obciążenia ciągłej belki wieloprzęsłowej

W stadium obciążenia sprężystego, kiedy maksymalne naprężenie przy zginaniu osiąga granice plastyczności materiału drutu $\sigma_{max} = \sigma_T$ (rys. 7) w peryferyjnych warstwach przekroju, największy moment gnący z uwzględnieniem wskaźnika wytrzymałości W_x dla belki okrągłego przekroju wyznacza się w sposób [6]:

Rys. 7 Schemat obliczeniowy półprzekroju drutu

Wspólne rozwiązanie wyrażeń (17) i (18) daje:

$$F_u = \frac{\pi \cdot d^3}{4 \cdot l} \cdot \sigma_T \,. \tag{19}$$

W stadium obciążenia plastycznego, kiedy plastyczne odkształcenie obejmuje cały przekrój i normalne naprężenie $\sigma = \sigma_T = const$ (rys. 7), największy moment gnący wyznacza się w sposób [6]:

$$M_{max} = \sigma_T \cdot \int y \cdot dA = \sigma_T \cdot \int y \cdot b_y \cdot dy = \sigma_T \cdot \int y \cdot \sqrt{d^2 - 4 \cdot y^2} \cdot dy =$$
$$= \sigma_T \cdot \left(\int_0^{d/2} y \cdot \sqrt{d^2 - 2 \cdot y^2} \, dy \right) \cdot 2 = \frac{d^3}{6} \cdot \sigma_T \,. \tag{20}$$

Przy wspólnym rozwiązaniu (17) i (20) znajdujemy:

$$F_u = \frac{4}{3} \cdot \frac{d^3}{l} \cdot \sigma_T.$$
⁽²¹⁾

To znaczy, iż w stadium obciążenia plastycznego (21) siła gnąca jest o 1,7 razy większa niż siła obciążenia sprężystego (19).

W stadium obciążenia plastycznego z uwzględnieniem umocnienia materiału drutu, kiedy w przekroju, objętym odkształceniem plastycznym, naprężenia maksymalne w peryferyjnych warstwach osiągają granice wytrzymałości materiału $\sigma_{max} = \sigma_B$ (rys. 7), największy moment gnący wyznacza się w sposób [7, 8]:

$$M_{max} = \frac{d^3}{6} \cdot \sigma_T + \frac{\pi \cdot d^3}{32} \cdot \left(\sigma_B - \sigma_T\right) \approx \frac{d^3}{6} \cdot \frac{2 \cdot \sigma_T + 3 \cdot \sigma_B}{5} \,. \tag{22}$$

Wtedy przy wspólnym rozwiązaniu (17) i (22), przyjmując dla materiałów plastycznych $\sigma_T/\sigma_B \approx 0.6$, otrzymujemy:

$$F_u = \frac{4}{3} \cdot \frac{d^3}{l} \cdot \frac{2 \cdot \sigma_T + 3 \cdot \sigma_B}{5} \approx \frac{4}{3} \cdot \frac{d^3}{l} \cdot 1, 4\sigma_T.$$
⁽²³⁾

Zatem w stadium obciążenia plastycznego z uwzględnieniem umocnienia materiału drutu (23) siła gnąca jest o 1,4 razy większa niż siła obciążenia plastycznego bez umocnienia materiału (21), a o 2,4 razy większa niż siła obciążenia sprężystego (19).

Zależność ugięcia belki wieloprzęsłej o przekroju okrągłego od siły gnącej jest równa [7]:

$$\delta_u = \frac{F_u \cdot l^3}{3 \cdot \pi \cdot d^4 \cdot E} = \frac{F_u \cdot l^3}{12 \cdot d^2 \cdot EA},$$
(24)

gdzie:

E – wwspółczynnik sprężystości podłużnej materiału drutu,

 $A = \pi d^2/4$ – pole poprzecznego przekroju drutu.

Wobec regularności zorganizowanej struktury ND jest możliwość dość dokładnego zliczenia ilości kontaktów między zwojami (to również jest ilością przęseł), co pozwoli przejść od sił i przemieszczeń w kontakcie i przęśle pojedynczym do wyznaczenia odkształcenia całego ND. Tak więc, ilość kontaktów zawiera ilość warstw, ilość zwojów w przejściu i ilość przejść w jednej warstwie. Czyli z uwzględnieniem (4):

$$n_{\kappa} = 2 \cdot \sum_{i=1}^{n} \frac{2 \cdot L}{\pi \cdot D_{i} \cdot tg\beta} \cdot \left(\frac{\pi \cdot D_{i} \cdot sin\beta}{d+s}\right)^{2} = \frac{2 \cdot \pi \cdot L \cdot sin2\beta}{(d+s)^{2}} \cdot \sum_{i=1}^{n} D_{i} = \frac{2 \cdot \pi \cdot n \cdot (D_{opr} + H) \cdot L \cdot sin2\beta}{(d+s)^{2}} = \frac{l_{d}}{l}.$$
 (25)

WYDŁUŻENIE DRUTU PRZY USZCZELNIANIU NAWOJU

Zwiększenie obciążenia, powodujące rozpowszechnienie odkształcenia plastycznego w głąb przekroju drutu, dopóki będzie nim objęta cała wysokość przekroju, doprowadzi do utworzenia tzw. przegubu plastycznego. W naszym wypadku przeguby plastyczne są jednocześnie w przekrojach na podporach i pośrodku przęseł (rys. 8). Przy czym każde

Rys. 8 Model utworzenia przegubu plastycznego

przęsło belki staje się mechanizmem. Aby wyznaczyć siłę F_u , przy której powstaje przegub plastyczny, dla każdego mechanizmu belkowego rozwiążemy równanie równowagi granicznej jako równanie prac:

$$F_{u} \cdot \delta_{u} = M^{A}_{max} \cdot \alpha_{A} + M^{B}_{max} \cdot \alpha_{B} + M^{C}_{max} \cdot (\alpha_{A} + \alpha_{B}) = 4 \cdot M_{max} \cdot \alpha, \qquad (26)$$

gdzie:

wobec symetrii obciążenia $\alpha_A = \alpha_B = \alpha - k$ ąty obrotu prętów *AC* i *BC* w przegubach plastycznych *A* i *B* odpowiednie,

 $M^{4}_{max} = M^{B}_{max} = M^{C}_{max} = M_{max} = \sigma_{T} d^{3}/6$ – maksymalne momenty gnące, odpowiadające stanowi przegubu plastycznego, tzn. na podporach i w punkcie działania siły.

Ponieważ w momencie utworzenia przegubu plastycznego przemieszczenia są małe w porównaniu z przęsłem, to $\alpha \approx 2 \cdot \delta_u / l$. Wtedy równanie (26) ostatecznie wygląda jako:

$$F_{u} = \frac{4 \cdot M_{max} \cdot \alpha}{\delta_{u}} = \frac{8 \cdot M_{max}}{l} = \frac{4}{3} \cdot \frac{d^{3}}{l} \cdot \sigma_{T} \,. \tag{27}$$

Wzór ten pozwala wyznaczyć obciążenie, przy którym we wszystkich przęsłach belki wieloprzęsłowej są jednocześnie stworzone przeguby plastyczne, a w całości odpowiada wzorowi (21).

Oś belki plastycznie ugiętej jest dłuższa niż jej oś w stanie nieodkształconym (rys. 8). Zlekceważyć wydłużenie można, gdy ugięcie jest nadmiernie małe ($\delta_u \ll d$) czy przęsło jest nadmiernie duże ($l \gg d$) w porównaniu do rozmiarów (czyli wysokości) przekroju [5]. W naszym wypadku również odległość między podporami, jak i średnica przekroju belki i jej ugięcie, są wielkościami jednego rządu, tzn. współmierne. Wobec tego nie można unikać wydłużenia.

Dla wyznaczenia wydłużenia drutu przy uszczelnianiu ND przedstawimy osobny mechanizm belkowy jako układ prętowy, obciążony siłą F_u w punkcie C (rys. 8). Wyprowadzimy równanie równowagi względem osi pionowej y:

$$\sum y = 0; \qquad 2 \cdot N \cdot \sin \alpha - F_u = 0, \qquad (28)$$

gdzie:

N – wewnętrzna siła podłużna, powstająca w rozciąganych prętach AC i BC.

Wtedy względne wydłużenie prętów, zgodnie z prawem *Hooke* i z uwzględnieniem równań (27) i (28), otrzymujemy:

$$\varepsilon_F = \frac{N}{EA} = \frac{2 \cdot d^3 \cdot \sigma_T}{3 \cdot l \cdot EA \cdot \sin \alpha}.$$
(29)

Z innej strony, względne wydłużenie można wyrazić w sposób (rys. 8):

$$\varepsilon_F = \frac{1}{\cos\alpha} - 1 = \frac{2 \cdot (\delta_u - \delta_\kappa)}{l \cdot \sin\alpha} - 1 \qquad = > \qquad \sin\alpha = \frac{2 \cdot (\delta_u - \delta_\kappa)}{l \cdot (1 + \varepsilon_F)}. \tag{30}$$

Przy wspólnym rozwiązaniu (29) i (30) znajdujemy:

$$\varepsilon_F = \frac{2.4 \cdot (\delta_u - \delta_\kappa)}{d} - 1.$$
(31)

Uszczelnianie ND jako bryły obrotowej prowadzi do zmniejszenia jej średnicy. Wskutek tego nad dwoma sąsiednimi zwojami w każdej warstwie tworzy się "nadmierna długość" drutu, kompensująca jego lokalne wydłużenie plastyczne. Wtedy w kierunku od warstwy wewnętrznej do zewnętrznej wydłużenie plastyczne będzie się zmniejszało i może być nieobecne w ogóle. Poza tym, przez "nadmierną długość" nieuniknione jest mimowolne

ugięcie drutu. To z jednej strony, sprzyja obniżeniu siłowego zużycia przy obciskaniu ND, a także komplikuje splot zwojów, zabezpieczając tym samym podwyższenie wytrzymałości produkowanego materiału. Lecz z innej strony, doprowadzi to do zniekstałcenia zorganizowanej struktury PPMD (rys. 9). Zatem należy celowo stwierdzić, na której *i*-ej warstwie wydłużenie plastyczne i "nadmierna długość" są wyrównane.

Rys. 9 Nawój do obciążenia (a), oraz po obciążeniu z zachowaną zorganizowaną (b) a zniekształconą (c) strukturą

Względne wydłużenie zwoju drutu w dowolnej *i*-ej warstwie przez utworzenie "nadmiernej długości" przy zmniejszeniu bieżącej średnicy (12) w trakcie uszczelniania ND jest równe:

$$\varepsilon_{D} = \frac{\pi \cdot D_{i} / \cos\beta - \pi \cdot (D_{i} - 2 \cdot \Delta) / \cos\beta}{\pi \cdot D_{i} / \cos\beta} = \frac{2 \cdot \Delta}{D_{i}} = 2 \cdot \frac{n \cdot \delta_{u} + (2 \cdot n - 1) \cdot \delta_{\kappa}}{D_{opr} + 2 \cdot (2 \cdot n - 1) \cdot d} \approx \frac{\delta_{u} + 2 \cdot \delta_{\kappa}}{\frac{D_{opr}}{2 \cdot n} + 2 \cdot d} .$$
(32)

Wtedy, przyrównawszy plastyczne wydłużenie zwoju drutu poprzez działanie obciążenia (31) do wydłużenia zwoju przez utworzenie "nadmiernej długości" (32), wyznaczamy, na której warstwie te wydłużenia są wyrównane:

$$\varepsilon_{D} \le \varepsilon_{F} \qquad = > \qquad n \le \frac{1}{2 \cdot d} \cdot \frac{D_{opr}}{\frac{\delta_{u} + 2 \cdot \delta_{\kappa}}{2, 4 \cdot (\delta_{u} - \delta_{\kappa}) - d} - 2} = \left| \begin{smallmatrix} \delta_{u} \to d \\ \delta_{\kappa} \to d/2 \end{smallmatrix} \right| = \frac{D_{opr}}{16 \cdot d} . \tag{33}$$

Przeto, równanie (33) określa maksymalną ilość warstw nawijania drutu dla uniknięcia zniekształcenia w PPMD struktury zorganizowanej ostatecznej.

CHARAKTERYSTYKI STRUKTURALNE USZCZELNIANEGO NAWOJU

Na podstawie zbadanych procesów deformacyjnych, odbywających się w trakcie uszczelniania ND, dzięki jego zorganizowanej strukturze nadarza się możliwość obliczenia charakterystyk strukturalnych prasówki drucianej.

Porowatość PPMD wyznacza się według wzoru (1). Przy czym ogólna objętość wyrobu (rys. 4) jest równa:

$$V = \pi \cdot \frac{\left(D^2 - D_{opr}^2\right)}{4} \cdot L = \pi \cdot h \cdot \left(D_{opr} + h\right) \cdot L = \pi \cdot \left(H - \Delta\right) \cdot \left(D_{opr} + H - \Delta\right) \cdot L, \qquad (34)$$

gdzie zewnętrzna średnica wyrobu (rys. 4)

$$D = D_{opr} + 2 \cdot h = D_{opr} + 2 \cdot (H - \Delta)$$

Zajęta drutem objętość, jak dla ND również, według wyrazów (3) i (4) jest równa:

$$V_{S} = \frac{\pi \cdot d^{2}}{4} \cdot l_{d} = \frac{\pi^{2} \cdot n \cdot d^{2} \cdot (D_{opr} + H) \cdot L}{2 \cdot (d+s)} = \frac{\pi^{2} \cdot d \cdot H \cdot (D_{opr} + H) \cdot L}{4 \cdot (d+s)} .$$
(35)

Wtedy z uwzględnieniem (34) i (35) mamy:

$$P = 1 - \frac{V_s}{V} = 1 - \frac{\pi \cdot d}{4 \cdot (d+s)} \cdot \frac{H \cdot (D_{opr} + H)}{(H - \Delta) \cdot (D_{opr} + H - \Delta)} \approx 1 - \frac{0.8 \cdot d}{d+s} \cdot \Omega, \qquad (36)$$

gdzie współczynnik zmiany poprzecznych rozmiarów ND

$$\Omega = \frac{H \cdot \left(D_{opr} + H\right)}{\left(H - \Delta\right) \cdot \left(D_{opr} + H - \Delta\right)} = \frac{H \cdot \left(D_{opr} + H\right)}{h \cdot \left(D_{opr} + h\right)} = \frac{D_0^2 - D_{opr}^2}{D^2 - D_{opr}^2} \ge 1$$

Jednostkowa powierzchnia porów PPMD wyznacza się według wzoru (6). W danym wypadku pole powierzchni porów zależy również od pola stykowej powierzchni zwojów (15) i ich ilości (25), jak od pola bocznej powierzchni drutu (7). Tak więc, z uwzględnieniem (34) otrzymujemy:

$$S_{V} = \frac{S_{S} - n_{\kappa} \cdot S_{\kappa}}{V} = \frac{\frac{\pi \cdot H \cdot (D_{opr} + H)}{d + s} - \frac{2 \cdot n \cdot (D_{opr} + H) \cdot \sin 2\beta}{(d + s)^{2}} \cdot \frac{n_{p}}{n_{\delta}^{2}} \cdot d^{2}}{(H - \Delta) \cdot (D_{opr} + H - \Delta)} = \frac{\pi}{d + s} \cdot \frac{H \cdot (D_{opr} + H)}{(H - \Delta) \cdot (D_{opr} + H - \Delta)} \cdot \left(1 - \frac{\sin 2\beta}{2\pi} \cdot \frac{n_{p}}{n_{\delta}^{2}}\right) \approx \frac{\pi}{d + s} \cdot \Omega.$$
(37)

Jednostkowa powierzchnia porów PPMD również może być określona według wzoru (9) z uwzględnieniem wyrażenia (36):

$$S_V = 4 \cdot \frac{1-P}{d} = \frac{\pi}{d+s} \cdot \Omega.$$
(38)

Średni rozmiar porów PPMD według wzoru (10) z uwzględnieniem wyrażenia (36) jest równy:

$$d_P = d \cdot \frac{P}{1-P} = d \cdot \left(\frac{4 \cdot (d+s)}{\pi \cdot d \cdot \Omega} - 1\right) = \frac{4 \cdot (d+s)}{\pi \cdot \Omega} - d \approx 1.3 \cdot (d+s) \cdot \Omega^{-1} - d .$$
(39)

Tak więc, są otrzymane zależności (36-39) strukturalnych charakterystyk PPMD od rozmiarów i materiału drutu, warunków jego nawijania i odkształcenia ND.

UZALEŻNIENIE MIĘDZY CIŚNIENIEM USZCZELNIANIA I WZGLĘDNĄ SPOISTOŚCIĄ MATERIAŁU

Jedną z jakościowych ocen właściwości eksploatacyjnych jest względna spoistość. Dla zabezpieczenia możliwości zarządzania właściwościami PPMD wyprowadzimy uzależnienie między względną spoistością materiału v = 1 - P i ciśnieniem uszczelniania p = f(v). Dlatego skorzystamy z prawa zachowania energii, według którego ogólna praca obciskania ND dorównuje sumie prac, tracących na odkształcenie zwojów drutu w strefach stykowych i między nimi:

$$p \cdot \int_{\Delta} S d\Delta = n_{\kappa} \cdot \left(\int_{\delta_{\kappa}} F_{\kappa} d\delta_{\kappa} + \int_{\delta_{u}} F_{u} d\delta_{u} \right), \tag{40}$$

gdzie zmieniające się w trakcie promieniowego uszczelniania ND pole zewnętrznej powierzchni (pole obciążenia)

$$S = \pi \cdot (D_{opr} + 2 \cdot (H - \Delta)) \cdot L = \pi \cdot (D_{opr} + 4 \cdot n \cdot d - 2 \cdot \Delta) \cdot L.$$

Po całkowaniu równania (40) w oznaczonych granicach z uwzględnieniem wyrażeń (13), (23) i (25) otrzymujemy:

$$p = \frac{2 \cdot n \cdot \left(D_{opr} + H\right) \cdot \sin 2\beta}{\left(d + s\right)^2} \cdot \frac{\frac{n_p}{n_\delta^2} \cdot d^2 \cdot \delta_\kappa \Big|_0^{d/2} + \frac{4}{3} \cdot \frac{d^3}{l} \cdot 1.4 \cdot \delta_u \Big|_0^d}{\left(D_{opr} + 4 \cdot n \cdot d - \Delta\right) \cdot \Delta \Big|_0^{2nd}} \cdot \sigma_T = \left(\frac{4 \cdot \nu \cdot \sin 2\beta}{\pi \cdot \Omega}\right)^2 \cdot \left(\frac{n_p}{2 \cdot n_\delta^2 \cdot \sin 2\beta} + 1\right) \cdot \sigma_T.$$
(41)

Uzależnienie (41) między ciśnieniem obciskania i względną spoistością produkowanego PPMD pozwala, kontrolując warunkami technologicznymi w trakcie nawijania drutu i uszczelniania nawoju, zabezpieczyć wymagane właściwości wyrobu.

PODSUMOWANIE

Na zasadzie analizy struktury, kształtującej się przez nawijanie drutu, dzięki zorganizowanemu i regularnemu układaniu zwojów, są przeprowadzone analityczne badania przemiany struktury nawoju w trakcie jego obróbki deformacyjnej – rozpatrywane są modele współdziałania zwojów. Zliczona jest ilość kontaktów międzyzwojowych.

Wskutek badań procesów, towarzyszących odkształceniu ND, obliczone są charakterystyki strukturalne produkowanego PPMD. Ustalono, że przy zmniejszeniu średnicy drutu i odpowiednie szczeliny między zwojami, a przy powiększeniu odkształcenia, porowatość i średni rozmiar porów materiału spadają, a jednostkowa powierzchnia porów rośnie.

Określona ilość warstw nawijania, przy której możliwe jest uniknięcie zniekształcenia struktury zorganizowanej ostatecznej, zależy najbardziej od stosunku średnicy oprawki do średnicy drutu.

Uzależnienie między ciśnieniem obciskania i względną spoistością materiału jest funkcją kwadratową, a uwzględnia technologiczne warunki produkowania PPMD i właściwości mechaniczne drutu używanego.

LITERATURA

- 1. С.В. Белов, Пористые проницаемые материалы. М.: Металлургия, 1987. 335.
- 2. Ю.И. Синельников, и др. Пористые сетчатые материалы. М.: Металлургия, 1983. s. 64.
- Технология получения пористых проволочных изделий/А. Якубовский, Е. Петюшик//Материалы 22-го международного научного симпозиума молодых научных работников и студентов. Зелена Гура (Польша), 2001. Т. Механика. s. 247-252.
- 4. Напряженно-деформированное состояние в единичном контакте при упругом деформировании проницаемых материалов на основе проволоки в виде тел намотки/Е.Е. Петюшик, А.Ч. Якубовский, Ч.А. Якубовский//Весці Акад. навук Беларусі. Сер. фіз.-тэхн. навук. 2002. № 2. s. 10-15.
- 5. О методе расчета неразрезных балок/А.Ч. Якубовский, Ч.А. Якубовский/Вестник БНТУ. 2006. № 2. s. 43-48.
- 6. В.И. Феодосьев, Сопротивление материалов. М.: Наука, 1967.s. 552.
- 7. Расчет усилий и перемещений при упруго-пластическом изгибе и удлинении проволоки в слое проницаемого материала при радиальном прессовании тела

намотки/Е.Е. Петюшик, А.Ч. Якубовский, Ч.А. Якубовский//Весці Акадэміі навук Беларусі. Серыя фіз.-тэхнічных навук. 2003. № 1. s. 49-53.

8. Пластическое деформирование проволочного тела намотки / Е.Е. Петюшик, А.Ч. Якубовский, Ч.А. Якубовский//Вестник БГПА. 2002. № 1. s. 31-34.

Data przesłania artykułu do Redakcji: 09.2015 Data akceptacji artykułu przez Redakcję: 12.2015

dr inż. Andrzej Jakubowski, mgr inż. Renata Crasto Akademia Morska w Szczecinie, Zakład Mechaniki Technicznej IPNT WM Wały Chrobrego 1-2, 70-500 Szczecin, Polska e-mail: a.jakubowski@am.szczecin.pl