PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A method for assessing the coastline recession due to the sea level rise by assuming stationary wind-wave climate

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The method introduced in this study for future projection of coastline changes hits the vital need of communicating the potential climate change impact on the coast in the 21th century. A quantitative method called the Dynamic Equilibrium Shore Model (DESM) has been developed to hindcast historical sediment mass budgets and to reconstruct a paleo Digital Elevation Model (DEM). The forward mode of the DESM model relies on paleo-scenarios reconstructed by the DESM model assuming stationary wind-wave climate. A linear relationship between the sea level, coastline changes and sediment budget is formulated and proven by the least square regression method. In addition to its forward prediction of coastline changes, this linear relationship can also estimate the sediment budget by using the information on the coastline and relative sea level changes. Wind climate change is examined based on regional climate model data. Our projections for the end of the 21st century suggest that the wind and wave climates in the southern Baltic Sea may not change compared to present conditions and that the investigated coastline along the Pomeranian Bay may retreat from 10 to 100 m depending on the location and on the sea level rise which was assumed to be in the range of 0.12 to 0.24 m.
Rocznik
Strony
362--380
Opis fizyczny
Bibliogr. 53 poz., rys., wykr.
Twórcy
autor
  • Faculty of Geosciences, University of Szczecin, ul. A. Mickiewicza 18, 70-383 Szczecin, Poland
  • School of Earth and Environmental Sciences, University of Wollongong, NSW 2522, Wollongong, Australia
autor
  • Faculty of Geosciences, University of Szczecin, ul. A. Mickiewicza 18, 70-383 Szczecin, Poland
autor
  • Swedish Meteorological and Hydrological Institute, 60176, Norrköping, Sweden
  • Swedish Meteorological and Hydrological Institute, 60176, Norrköping, Sweden
  • Department of Meteorology, Stockholm University, 10691, Stockholm, Sweden
Bibliografia
  • [1]. Abdalla, S. and Cavaleri, L. (2002). Effect of wind variability and variable air density on wave modeling. Journal of Geophysical Research 107(C7): 17-1:17-17. DOI: 10.1029/2000JC000639.
  • [2]. Ashton, A., Murray, A. & Arnoult, O. (2001). Formation of coastline features by large-scale instabilities induced by high-angle waves. Nature 414(November): pp. 1-5. DOI: 10.1038/35104541.
  • [3]. Ashton, A.D. & Murray, a. B. (2006a). High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes. Journal of Geophysical Research 111(F4): p.F04011. DOI: 10.1029/2005JF000422.
  • [4]. Ashton, A.D. & Murray, a. B. (2006b). High-angle wave instability and emergent shoreline shapes: 2. Wave climate analysis and comparisons to nature. Journal of Geophysical Research 111(F4): p.F04012.DOI: 10.1029/2005JF000423.
  • [5]. Ashton, A.D., Walkden, M.J. a. & Dickson, M.E. (2011). Equilibrium responses of cliffed coasts to changes in the rate of sea level rise. Mar. Geol. 284: 217-229. DOI: 10.1016/j. margeo.2011.01.007.
  • [6]. Bellafiore, D., Bucchignani, E., Gualdi, S., Carniel, S., Djurdjevic,V. and Umgiesser, G. (2012). Assessment of meteorological climate model inputs for coastal hydrodynamics modeling. Ocean Dynamics 62: 555-568. DOI: 10.1007/s10236-011- 0508-2.
  • [7]. Bonaldo, D., Benetazzo, A., Sclavo, M., Carniel, C. (2015). Modelling wave-driven sediment transport in a changing climate: a case study for Northern Adriatic sea (Italy). Regional Environmental Change 15(1): 45-55. DOI: 10.1007/ s10113-014-0619-7.
  • [8]. Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A third- generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research 104(C4): 7649. DOI: 10.1029/98JC02622.
  • [9]. Borowka, R.K., Osadczuk, K., Osadczuk, A., Witkowski, A., Skowronek, A., Reimann, T., Latalowa, M., Wawrzyniak- Wydrowska, B., Wozinski, R. & Duda, T. (2011). Stages of postglacial evolution of the Odra River mouth area, In Poland-Germany.- IAG/AIG Regional Conference 2011, February 18-22(p. 111). Addis Ababa, Ethiopia.
  • [10]. Bruun, P. (1962). Sea-level rise as a cause of shore erosion. Journal Waterways and Harbours Division 88(1-3): 117-130.
  • [11]. Bruun, P. (1988). The Bruun Rule of Erosion by Sea-Level Rise: A Discussion on Large-Scale Two- and Three-Dimensional Usages. Journal of Coastal Research 4(4): 627-648.
  • [12]. Bray, M. & Hooke, J. (1997). Prediction of soft-cliff retreat with accelerating sea-level rise. J. Coast. Res. 13: 453-467.
  • [13]. Brooks, S.M. & Spencer, T. (2012). Shoreline retreat and sediment release in response to accelerating sea level rise: Measuring and modelling cliffline dynamics on the Suffolk Coast, UK. Glob. Planet. Change 80-81: 165-179. DOI: 10.1016/j. gloplacha.2011.10.008.
  • [14]. Burke L, Kura Y, Kassem K, Revenga C, Spalding M & McAllister D (2001). Pilot analysis of global ecosystems: coastal ecosystems. Washington DC: World Resources Institute.
  • [15]. Cooper, J. & Pilkey, O. (2004). Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Global and Planetary Change 43(3-4): 157-171. DOI: 10.1016/j.gloplacha.2004.07.001.
  • [16]. Deng, J., Harff, J., Giza, A., Hartleib, J., Dudzinska-Nowak, J., Bobertz, B., Furmanczyk, K. & Zölitz, R. (2013).
  • [17]. Reconstructions of coastline changes by the comparisons of historical maps at the Pomeranian Bay, southern Baltic Sea. In Under the Sea: Archaeology and Paleolandscapes, Sept 23-27 (p. 98), Szczecin, Poland.
  • [18]. Deng, J., Zhang, W, Harff, J., Schneider, R., Dudzinska-Nowak, J., Terefenko, P. & Furmańczyk, K. (2014). A numerical approach for approximating the historical morphology of wave-dominated coasts—A case study of the Pomeranian Bight, southern Baltic Sea. Geomorphology 204: 425-443. DOI: 10.1016/j.geomorph.2013.08.023.
  • [19]. Dickson, M. E., Walkden, M. J. A. and Hall, J. W. (2007). Systemic impacts of climate change on an eroding coastal region over the twenty-first century. Climatic Change 84(2): 141-166. DOI: 10.1007/s10584-006-9200-9.
  • [20]. Doscher, R., U, & Jones, C. (2002). The development of the regional coupled ocean-atmosphere model RCAO. Boreal Environment Research 7: 183-192.
  • [21]. Doscher R., Wyser K., Meier H. E. M., Qian M. & Redler R. (2010). Quantifying Arctic contributions to climate predictability in a regional coupled ocean-ice- atmosphere model. Clim. Dynam.34 (7-8): 1157-1176. DOI: 10.1007/ s00382-009-0567-y.
  • [22]. Harff, J. & Lüth, F. (eds.). (2007). Sinking Coasts - Geosphere Ecosphere and Anthroposphere of the Holocene Southern Baltic Sea. Berlin: Ber.d.Römisch-Germanischen Kommission .
  • [23]. Harff, J. & Meyer, M. (2011). Coastlines of the Baltic Sea - Zones of Competition Between Geological Processes and a Changing Climate: Examples from the Southern Baltic. In Harff, J., Björck & S., Hoth, P. (eds.), The Baltic Sea Basin (pp. 149-164). Berlin, Heidelberg: Springer-Verlag. DOI: 10.1007/978-3-642-17220-5_7.
  • [24]. HELCOM. (2013). Climate change in the Baltic Sea Area - HELCOM Thematic Assessment in 2013. Balt. Sea Environ. Proc. No. 137.
  • [25]. IPCC. (2013). The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley (eds.), Climate Change 2013 (1535). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
  • [26]. Kraus, N.C., Larson, M., and Wise, R. (1999). Depth of closure in beachfill design. In Proceedings of the 12th National Conference on Beach Preservation Technology. January 27¬29 1999 (pp. 271-286). St. Petersburg, Florida: Florida Shore and Beach Preservation Association.
  • [27]. Löptien, U., S. Martensson, H. E. M. Meier, & A. Höglund. (2013). Long-term characteristics of simulated ice deformation in the Baltic Sea (1962-2007), J. Geophys. Res. Oceans 118: 801-815. DOI: 10.1002/jgrc.20089.
  • [28]. Meier, M., Hoglund, A. & Doscher, R. (2011). Quality assessment of atmospheric surface fields over the Baltic Sea from an ensemble of regional climate model simulations with respect to ocean dynamics. Oceanologia 53: 193-227. DOI: 10.5697/oc.53-1-TI.193.
  • [29]. Meyer, M.; Harff, J.; Gogina, M., & Barthel, A. (2008). Coastline changes of the Darss-Zingst Peninsula—a modelling approach. Journal of Marine Systems 74: S147-S154.DOI: 10.1016/j.jmarsys.2008.03.023.
  • [30]. Murray, a., Gopalakrishnan, S., McNamara, D. E., & Smith, M. D. (2013). Progress in coupling models of human and coastal landscape change. Computers & Geosciences 53: 30-38. DOI: 10.1016/j.cageo.2011.10.010.
  • [31]. Nakicenovic, N. & Swart, R. Eds. (2000). Special report on emissions scenarios. In A Special Report of Working Group III of the Intergovernmental Panel on Climate Change (599). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
  • [32]. Nikulin, G., Kjellström, E., Hansson, U., Strandberg, G. & Ullerstig, A. (2011), Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations, Tellus 63A, 41-55, DOI: 10.1111/j.1600-0870.2010.00466.x.
  • [33]. Pilkey, O. & Cooper, J. (2004). Society and sea level rise. Science 303: 1781-1782. DOI: 10.1126/science.1093515.
  • [34]. Piotrowski A. (1999). Etapy rozwoju Bramy Świny, In Borówka R. K., Piotrowski A. & Wiśniowski Z., (eds.), Problemy geologii, hydrogeologii i ochrony środowiska wybrzeża morskiego Zachodniego Pomorza (pp. 215-241). Szczecin: Przewodnik LXX Zjazdu Naukowego PTG.
  • [35]. Ranasinghe, R. & Stive, M.J.F. (2009). Rising seas and retreating coastlines. Climatic Change 97: 465-468. DOI: 10.1007/ s10584-009-9593-3.
  • [36]. Ranasinghe, R., Callaghan, D. & Stive, M.J.F. (2011). Estimating coastal recession due to sea level rise: beyond the Bruun rule. Clim. Change 110: 561-574. DOI: 10.1007/s10584-011- 0107-8.
  • [37]. Ranasinghe R, Duong TM, Uhlenbrook S et al. (2012). Climate-change impact assessment for inlet-interrupted coastlines. Nature Climate Change 3(1): 83-87. DOI:10.1038/ nclimate1664.
  • [38]. Richter, a., Groh, a. & Dietrich, R. (2012). Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region. Physics and Chemistry of the Earth Parts A/B/C 53¬54: 43-53. DOI: 10.1016/j.pce.2011.04.011.
  • [39]. Roelvink, Danom & Reniers, Ad. (2012). A Guide to Modelling Coastal Morphology. Singapore: World Scientific Publishing.
  • [40]. Rosati, J.D., Dean, R.G. & Walton, T.L. (2013). The modified Bruun Rule extended for landward transport. Mar. Geol. 340: 71-81.DOI: 10.1016/j.margeo.2013.04.018.
  • [41]. Rosentau, A., Meyer, M., Harff, J., Dietrich, R. & Richter, A. (2007). Relative sea level change in the Baltic Sea since the Litorina Transgression. Zeitschrift fuer Geologische Wissenschaften 35(1/2): 3-16.
  • [42]. Schimanke, S., C. Dieterich & H.E.M. Meier. (2014). An algorithm based on sea-level pressure fluctuations to identify major Baltic inflow events, Tellus A 66: 23452. DOI: 10.3402/ tellusa.v66.23452.
  • [43]. SCOR. (1991). The response of beaches to sea-level changes: a review of predictive models. Journal of Coastal Research 7: 895-921.
  • [44]. Soomere, T.& Viska M. (2014). Simulated wave-driven sediment transport along the eastern coast of the Baltic Sea. Journal of Marine Systems 129: 96-105. DOI: 10.1016/j. jmarsys.2013.02.001.
  • [45]. Thieler, E. R., Pilkey Jr, O. H., Young, R. S., Bush, D. M. & Chai, F. (2000). The Use of Mathematical Models to Predict Beach Behavior for U.S. Coastal Engineering: A Critical Review. Journal of Coastal Research 16(1): 48-70.
  • [46]. U.S. Army Corps of Engineers. (1984). Shore protection manual (4th ed.). Washington, DC: .Department of the Army, U.S. Corps of Engineers.
  • [47]. Walkden, M. & Dickson, M. (2008). Equilibrium erosion of soft rock shores with a shallow or absent beach under increased sea level rise. Mar. Geol. 251: 75-84. DOI: 10.1016/j. margeo.2008.02.003.
  • [48]. Weisse, R., v., Storch H., Callies, U., Chrastansky, A., Feser, F., Grabemann, I., Guenther, H., Pluess, A., Stoye, T., Tellkamp, J., Winterfeldt, J. & Woth, K. (2009). Regional meteo-marine reanalyses and climate change projections: Results for Northern Europe and potentials for coastal and offshore applications. Bulletin of the American Meteorological Society 90: 849-860. DOI:10.1175/2008BAMS2713.
  • [49]. Woodroffe, C.D. & Murray-Wallace, C. V (2012). Sea-level rise and coastal change: the past as a guide to the future. Quat. Sci. Rev. 54: 4-11. DOI: 10.1016/j.quascirev.2012.05.009.
  • [50]. Zhang, W.Y., Harff, J., Schneider, R. & Wu, C.Y. (2011). A multi-scale centennial morphodynamic model for the southern Baltic coast. Journal of Coastal Research 27: 890-917. DOI: 10.2112/JCOASTRES-D-10-00055.1.
  • [51]. Zhang, W.Y., Harff, J. & Schneider, R. (2011a). Analysis of 50-year wind data of the southern Baltic Sea for modelling coastal morphological evolution-a case study from the Darss-Zingst Peninsula. Oceanologia 53: 489-518. DOI: 10.5697/oc.53-1- TI.489.
  • [52]. Zhang, W.Y., Schneider, R. and Harff, J. (2012). A multi-scale hybrid long-term morphodynamic model for wave-dominated coasts. Geomorphology 149-150: 49-61. DOI:10.1016/j.geomorph.2012.01.019.
  • [53]. Zhang, W. Y., Deng, J., Harff, J., Schneider, R. & Dudzinska-Nowak, J. (2013). A coupled modelling scheme for Long-shore sediment transport of wave-dominated coasts — A case study from the southern Baltic Sea. Coastal Engineering 72: 39-55. DOI: 10.1016/j.coastaleng.2012.09.003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1a4614f-be09-4b66-9f32-be6615b9251d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.