PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the nonlocal interaction range for stability of nanobeams with nonlinear distribution of material properties

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study analyses the range of nonlocal parameters’ interaction on the buckling behaviour of nanobeam. The intelligent nonhomogeneous nanobeam is modelled as a symmetric functionally graded (FG) core with porosity cause nonlinear distribution of material parameters. The orthotropic face-sheets are made of piezoelectric materials. These kinds of structures are widely used in nanoelectromechanical systems (NEMS). The nanostructure model satisfies the assumptions of Reddy third-order beam theory and higher-order nonlocal elasticity and strain gradient theory. This approach allows to predict appropriate mechanical response of the nanobeam regardless of thin or thick structure, in addition to including nano-sized effects as hardening and softening. The analysis provided in the present study focuses on differences in results for nanobeam stability obtained based on classical and nonlocal theories. The study includes the effect of diverse size-dependent parameters, nanobeams’ length-to-thickness ratio and distributions of porosity and material properties through the core thickness as well as external electro-mechanical loading. The results show a dependence of nonlocal interaction range on geometrical and material parameters of nanobeam. The investigation undertaken in the present study provides an interpretation for this phenomenon, and thus aids in increasing awareness of nanoscale structures’ mechanical behaviour.
Rocznik
Strony
151--161
Opis fizyczny
Bibliogr. 75 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
Bibliografia
  • 1. Bhushan B. (Ed.) Springer Handbook of Nanotechnology. Springer-Verlag; 2004.
  • 2. Zhao Q, Gan Z, Zhuang Q. Electrochemical sensors based on car-bon nanotubes. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis. 2002;14: 1609–1613.
  • 3. Briscoe J, Dunn S. Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters. Nano Energy. 2015;14: 15–29.
  • 4. Fennimore A, Yuzvinsky T, Han W-Q, Fuhrer M, Cumings J, Zettl A. Rotational actuators based on carbon nanotubes. Nature. 2003;424: 408-410.
  • 5. Ghayesh MH, Farajpour A. A review on the mechanics of functionally graded nanoscale and microscale structures. International Journal of Engineering Science. 2019;137: 8-36.
  • 6. Lu L, Guo X, Zhao J. A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms. International Journal of Engineering Science. 2017;119, 265-277.
  • 7. Toupin RA. Elastic materials with couple-stresses. Archive for Ra-tional Mechanics and Analysis. 1962;11: 385-414.
  • 8. Mindlin RD, Tiersten HF. Effects of couple-stresses in linear elastici-ty. Archive for Rational Mechanics and Analysis. 1962;11: 415-448.
  • 9. Koiter WT. Couple stresses in the theory of elasticity. I and II. Nederl Akad Wetensch Proc Ser B. 1964;67: 17-44.
  • 10. Yang F, Chong ACM, Lam DCC, Tong P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures. 2002;39: 2731-2743.
  • 11. Mindlin RD. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis. 1964;16: 51-78.
  • 12. Mindlin RD. Second gradient of strain and surface-tension in linear elasticity. International Journal of Solids and Structures. 1965;1: 417-438.
  • 13. Lam DCC, Yang F, Chong ACM, Wang J, Tong P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids. 2003;51: 1477-1508.
  • 14. Kroner E. Elasticity theory of materials with long range cohesive forces. International Journal of Solids and Structures. 1967;3: 731-742.
  • 15. Eringen AC. Nonlocal polar elastic continua. International Journal of Engineering Science. 1972;10: 1-16.
  • 16. Eringen AC. Linear theory of nonlocal elasticity and dispersion of plane waves. International Journal of Engineering Science. 1972;10: 425-435.
  • 17. Eringen AC, Edelen DGB. On nonlocal elasticity. International Jour-nal of Engineering Science. 1972;10: 233-248.
  • 18. Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface wave. Journal of Applied Physics. 1983;54: 4703-4710.
  • 19. Romano G, Barretta R. Nonlocal elasticity in nanobeams: the stress-driven integral model. International Journal of Engineering Science. 2017;115: 14-27.
  • 20. Yang B, Vehoff H. Dependence of nanohardness upon indentation size and grain size – A local examination of the interaction between dislocations and grain boundaries. Acta Materialia. 2007;55: 849-856.
  • 21. Voyiadjis GZ, Peters R. Size effects in nanoindentation: an experi-mental and analytical study. Acta Mechanica. 2010;211: 131-153.
  • 22. Askes H, Aifantis EC. Gradient elasticity and flexural wave dispersion in carbon nanotubes. Physical Review B. 2009;80: 195412.
  • 23. Lim CW, Zhang G, Reddy JN. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Jour-nal of the Mechanics and Physics of Solids. 2015;78, 298-313.
  • 24. Demir Ç, Civalek Ö. Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and non-local discrete models. Applied Mathematical Modelling. 2013;37: 9355-9367.
  • 25. Akgöz B, Civalek Ö. Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. Journal of Vibration and Control. 2014;20: 606-616.
  • 26. Cornacchia F, Fabbrocino F, Fantuzzi N, Luciano R, Pena R. Analyt-ical solution of cross- and angle-ply nano plates with strain gradient theory for linear vibrations and buckling. Mechanics of Advanced Ma-terials and Structures. 2021;28: 1201-1215.
  • 27. Żur KK, Farajpour A, Lim CW, Jankowski P. On the nonlinear dynam-ics of porous composite nanobeams connected with fullerenes. Composite Structures. 2021;274: 114356.
  • 28. Monaco GT, Fantuzzi N, Fabbrocino F, Luciano R. Critical Tempera-tures for Vibrations and Buckling of Magneto-Electro-Elastic Nonlocal Strain Gradient Plates. Nanomaterials. 2021;11: 87.
  • 29. Jalaei MH, Ghorbanpour Arani A, Nguyen-Xuan H. Investigation of thermal and magnetic field effects on the dynamic instability of FG Timoshenko nanobeam employing nonlocal strain gradient theory. In-ternational Journal of Mechanical Sciences. 2019;161-162: 105043.
  • 30. Żur KK, Arefi M, Kim J, Reddy JN. Free vibration and buckling anal-yses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Compo-sites Part B: Engineering. 2020;182: 107601.
  • 31. Zhao X, Zheng S, Li Z. Effects of porosity and flexoelectricity on static bending and free vibration of AFG piezoelectric nanobeams. Thin-Walled Structures. 2020;151: 106754.
  • 32. Faghidian SA, Żur KK, Pan E, Kim J. On the analytical and meshless numerical approaches to mixture stress gradient functionally graded nano-bar in tension. Engineering Analysis with Boundary Elements. 2022;134: 571-580.
  • 33. Barretta R, Caporale A, Faghidian SA, Luciano R, Marotti de Sciarra F, Medaglia CM. A stress-driven local-nonlocal mixture model for Ti-moshenko nano-beams. Composites Part B: Engineering. 2019;164: 590-598.
  • 34. Barretta R, Fazelzadeh SA, Feo L, Ghavanloo E, Luciano R. Non-local inflected nano-beams: A stress-driven approach of bi-Helmholtz type. Composite Structures. 2018;200: 239-245.
  • 35. Barretta R, Faghidian SA, Luciano R, Medaglia CM, Penna R. Stress-driven two-phase integral elasticity for torsion of nano-beams. Composites Part B: Engineering. 2018;145: 62-69.
  • 36. Jalaei MH, Thai HT, Civalek Ö. On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. International Journal of Engineering Science. 2022;172: 103629.
  • 37. Monaco GT, Fantuzzi N, Fabbrocino F, Luciano R. Trigonometric Solution for the Bending Analysis of Magneto-Electro-Elastic Strain Gradient Nonlocal Nanoplates in Hygro-Thermal Environment. Math-ematics. 2021;9: 567.
  • 38. Penna R, Feo L, Lovisi G., Hygro-thermal bending behavior of po-rous FG nano-beams via local/nonlocal strain and stress gradient theories of elasticity. Composite Structures. 2021;263: 113627.
  • 39. Monaco GT, Fantuzzi N, Fabbrocino F, Luciano R. Semi-analytical static analysis of nonlocal strain gradient laminated composite nano-plates in hygrothermal environment. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2021;43: 274.
  • 40. Faghidian SA, Żur KK, Reddy JN. A mixed variational framework for higher-order unified gradient elasticity. International Journal of Engi-neering Science. 2022;170: 103603.
  • 41. Apuzzo A, Barretta R, Faghidian SA, Luciano R, Marotti de Sciarra F. Nonlocal strain gradient exact solutions for functionally graded in-flected nano-beams. Composites Part B: Engineering. 2019;164: 667-674.
  • 42. Reddy JN. Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science. 2007;45: 288-307.
  • 43. Aydogdu M. A general nonlocal beam theory: Its application to nano-beam bending, buckling and vibration. Physica E: Low-dimensional Systems and Nanostructures. 2009;41: 1651–1655.
  • 44. Roque CMC, Ferreira AJM, Reddy JN. Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. Inter-national Journal of Engineering Science. 2011;49: 976-984.
  • 45. Thai HT. A nonlocal beam theory for bending, buckling, and vibration of nanobeams. International Journal of Engineering Science. 2012;52: 56–64.
  • 46. Thai HT, Vo TP. A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nano-beams. International Journal of Engineering Science. 2012;54: 58–66.
  • 47. Ghannadpour SAM, Mohammadi B, Fazilati J. Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method. Com-posite Structures. 2013;96: 584–589.
  • 48. Şimşek M, Yurtcu HH. Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshen-ko beam theory. Composite Structures. 2013;97: 378-386.
  • 49. Rahmani O, Jandaghian AA. Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theo-ry. Applied Physics A. 2015;119: 1019–1032.
  • 50. Chaht FL, Kaci A, Houari MSA, Tounsi A, Bég OA, Mahmoud SR. Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel and Composite Structures. 2015;18: 425-442.
  • 51. Yu YJ, Xue Z-N, Li C-L, Tian X-G. Buckling of nanobeams under nonuniform temperature based on nonlocal thermoelasticity. Compo-site Structures. 2016;146: 108–113.
  • 52. Nejad MZ, Hadi A, Rastgoo A. Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory. International Journal of Engineering Sci-ence. 2016;103: 1–10.
  • 53. Li X, Li L, Hu Y, Ding Z, Deng W. Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Composite Structures. 2017;165: 250–265.
  • 54. Tuna M, Kirca M. Bending, buckling and free vibration analysis of Euler-Bernoulli nanobeams using Eringen’s nonlocal integral model via finite element method. Composite Structures. 2017;179: 269–284.
  • 55. Mirjavadi SS, Afshari MB, Khezek M, Shafiei N, Rabby S, Kordnejad M. Nonlinear vibration and buckling of functionally graded porous na-noscaled beams. Journal of Brazilian Society of Mechanical Sciences and Engineering. 2018;40: 352.
  • 56. Khaniki HB, Hosseini-Hashemi Sh, Nezamabadi A. Buckling analysis of nonuniform nonlocal strain gradient beams using generalized dif-ferential quadrature method. Alexandria Engineering Journal. 2018;57: 1361–1368.
  • 57. Alibeigi B, Tadi Beni Y. On the size-dependent magne-to/electromechanical buckling of nanobeams. European Physical Journal Plus. 2018;133: 398.
  • 58. Alibeigi B, Tadi Beni Y, Mehralian F. On the thermal buckling of magneto-electroelastic piezoelectric nanobeams. European Physical Journal Plus. 2018;133: 133.
  • 59. Xiao W, Gao Y, Zhu H. Buckling and post-buckling of magneto-electro-thermo-elastic functionally graded porous nanobeams. Mi-crosystem Technologies. 2019;25: 2451-2470.
  • 60. Hashemian M, Foroutan S, Toghraie D. Comprehensive beam mod-els for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects. Mechanics of Ma-terials. 2019;139: 103209.
  • 61. Jankowski P, Żur KK, Kim J, Reddy JN. On the bifurcation buckling and vibration of porous nanobeams. Composite Structures. 2020;250: 112632.
  • 62. Civalek Ö, Uzun B, Yayli MÖ. Stability analysis of nanobeams placed in electromagnetic field using a finite element method. Arabian Jour-nal of Geoscience. 2020;13: 1165.
  • 63. Civalek Ö, Uzun B, Yayli MÖ. Finite element formulation for nano-scaled beam elements, ZAMM – Journal of Applied Mathematics and Mechanics. 2021;e202000377.
  • 64. Jankowski P, Żur KK, Kim J, Lim CW, Reddy JN. On the piezoelec-tric effect on stability of symmetric FGM porous nanobeams. Compo-site Structures. 2021;267: 113880.
  • 65. Eringen AC. Nonlocal Continuum Field Theories, Springer;2002.
  • 66. Reddy JN. Energy principles and variational methods in applied mechanics. John Wiley & Sons;2017.
  • 67. Wang Q. On buckling of column structures with a pair of piezoelectric layers. Engineering Structures. 2002;24(2): 199–205.
  • 68. Nguyen T-K, Vo TP, Nguyen B-D, Lee J. An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory. Composite Struc-tures. 2016;156: 238-252.
  • 69. Vo TP, Thai HT, Nguyen T-K, Maheri A, Lee J. Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory. Engineering Structures. 2014;64: 12–22.
  • 70. Ghavanloo E, Fazelzadeh SA. Evaluation of nonlocal parameter for single-walled carbon nanotubes with arbitrary chirality. Meccanica. 2016;51: 41-54.
  • 71. Thai HT, Vo TP, Nguyen TK, Kim SE. A review of continuum me-chanics models for size-dependent analysis of beams and plates. Composite Structures. 2017;177: 196-219.
  • 72. Zhang Z, Wang CM, Challamel N. Eringen’s length scale coefficient for buckling of nonlocal rectangular plates from microstructured beam-grid model. International Journal of Solids and Structures. 2014;51: 4307-4315.
  • 73. Mehralian F, Tadi Beni Y, Zeverdejani MK. Calibration of nonlocal strain gradient shell model for buckling analysis of nanotubes using molecular dynamics simulations. Physica B: Condensed Matter. 2017;521: 102-111.
  • 74. Zeighampour H, Tadi Beni Y. Size dependent analysis of wave propagation in functionally graded composite cylindrical microshell reinforced by carbon nanotube. Composite Structures. 2017;179: 124-131.
  • 75. Lu L, Guo X, Zhao J. Size-dependent vibration analysis of nano-beams based on the nonlocal strain gradient theory. International Journal of Engineering Science. 2017;116: 12–24.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1a346a8-0dec-4d85-b9f1-5d1cf1984051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.