PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ANN model of stress-strain relationship for aluminium sponge in uniaxial compression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we present a proposition of a model of the compressive behaviour of open- -cell aluminium with relation to the material apparent density. The research was based on experimental data from uniaxial compression tests conducted for two sample lots. These results were analysed with the use of neural networks in a specially designed algorithm. The main criterion for choosing a satisfactory approximation was mean absolute relative error MARE<5%. As a result of the analysis, the sought relation was extracted and is presented as a proposition of a new ANN model of the compressive stress-strain relationship for aluminium sponge.
Rocznik
Strony
385--390
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
  • Cracow University of Technology, Faculty of Electrical and Computer Engineering, Cracow, Poland
  • Cracow University of Technology, Faculty of Electrical and Computer Engineering, Cracow, Poland
Bibliografia
  • 1. Demuth H., Beale M., Hagan M., 2009, Neural Network Toolbox 6 User’s Guide, MathWorks Inc.
  • 2. Dudzik M., Stręk A.M., 2020, ANN architecture specifications for modelling of open-cell aluminium under compression, Mathematical Problems in Engineering, in press.
  • 3. García-Moreno F., 2016, Commercial applications of metal foams: their properties and production, Materials, 9, 85, DOI:10.3390/ma9020085.
  • 4. Gibson L.J., Ashby M.F., 1988, Cellular Solids. Structure and Properties, Pergamon Press.
  • 5. Hagan M.T., Demuth H.B., Beale M.H., De Jesus O., 2014, Neural Network Design, eBook.
  • 6. ISO 13314:2011 Mechanical testing of metals – Ductility testing – Compression test for porous and cellular metals.
  • 7. Kasza P., Lipowska B., Pęcherski R.B., Stręk A.M., Wańczyk K., 2016, Compression of open-cell aluminium, Engineering Transactions, 64, 4, 629-634.
  • 8. Kränzlin N., Niederberger M., 2015, Controlled fabrication of porous metalsfrom the nanometer to the macroscopic scale, Materials Horizons, 2, 4, 359-377, DOI: 10.1039/C4MH00244J.
  • 9. Madsen K., Nielsen H.B., Tingleff O., 2004, Methods for non-linear least squares problems, [In:] Informatics and Mathematical Modelling Technical University of Denmark, available online: http://www2.i mm.dtu.dk/pubdb/views/edoc download.php/3215/pdf/imm3215.... (accessed on 15th Oct 2018).
  • 10. Potrzeszcz-Sut B., Pabisek E., 2014, ANN constitutive material model in the shakedown analysis of an aluminium structure, CAMES, 21, 49-58.
  • 11. Stręk A.M., Dudzik M., Kwiecień A., Wańczyk K., Lipowska B., 2019a, Verification of application of ANN modelling for compressive behaviour of metal sponges, Engineering Transactions, 67, 271-288.
  • 12. Stręk A.M., Lipowska B., Wańczyk K., 2019b, Selected aspects of manufacturing of aluminium sponge, Archives of Metallurgy and Materials, 3, 1145-1150.
  • 13. Sumelka W., Łodygowski T., 2013, Reduction of the number of material parameters by ANN approximation, Computational Mechanics, 52, 2, 287-300.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a19ed7c2-0ae0-47d9-99ad-579acb092815
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.