PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trabecular bone remodelling in the femur of C57BL/6J mice treated with diclofenac in combination with treadmill exercise

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Analgesic treatment with diclofenac deteriorates bone structure and decreases biomechanical properties. This bone loss has been though to be reversed by training. The impact of exercise on bone treated with diclofenac (DF) has reminded elusive. In the present study, we assayed the combined impact of exercises and DF on mouse femur. Methods: The femur samples we obtained from 30 days treated C57BL/6J female mice. The training group ran on a horizontal treadmill at 12 m/min by 30 min a day (5% grade/slope). The group of ten mice treated with DF received the drug subcutaneously every day (5 mg/kg of body weight/day). The combined group ran on the treadmill and obtained DF. After 30 days, we sacrificed mice and studied their femurs using microcomputed tomography (µCT), dynamic mechanical analysis (DMA) and nanoindentation. Results: We observed that treadmill running and DF decreased trabecular bone volume and mineral density. Combined effect of training and DF was not additive. A significant interaction of both parameters suggested protective effect of training on bone loss provoked by DF. The femur cortical bone shell remained untouched by the training and treatment. The training and the DF treatment did not alter the storage modulus E’ significantly. The unchanged storage modulus would be suggesting on the unaltered bone strength. Conclusions: We concluded that even relatively short time of training with concomitant DF treatment could be protective on trabecular bone. Although viscoelastic properties of the entire femur were not modulated, femur trabecular tissue was thinned by treatment with DF and protected by training.
Rocznik
Strony
3--11
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznań, Poland
  • Department of Mechanics, Materials and Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznań, Poland
  • Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznań, Poland
  • Department of Mechanics, Materials and Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
  • Crystal Physics Division, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
  • Crystal Physics Division, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
  • Institute of Materials Research and Quantum Engineering, Faculty of Technical Physics, Poznan University of Technology, Poznań, Poland
  • Institute of Materials Research and Quantum Engineering, Faculty of Technical Physics, Poznan University of Technology, Poznań, Poland
  • Centre for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland
  • Department of Pedagogy and Psychology, University of Security, Poznań, Poland
  • Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznań, Poland
  • Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznań, Poland
  • Department of Paediatric Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznań, Poland
Bibliografia
  • [1] BECK A., KRISCHAK G., SORG T., AUGAT P., FARKER K., MERKEL U., KINZL L., CLAES L., Influence of diclofenac (group of nonsteroidal anti-inflammatory drugs) on fracture healing, Arch. Orthop. Trauma Surg., 2003, 123 (7), 327–332.
  • [2] BROCK G.R., CHEN J.T., INGRAFFEA A.R., MACLEAY J., PLUHAR G.E., BOSKEY A.L., VAN DER MEULEN M.C.H., The effect of osteoporosis treatments on fatigue properties of cortical bone tissue, Bone Rep., 2015, 2, 8–13.
  • [3] DUFF W.R., CHILIBECK P.D., CANDOW D.G., GORDON J.J., MASON R.S., TAYLOR-GJEVRE R., NAIR B., SZAFRON M., BAXTER-JONES A., ZELLO G.A., KONTULAINEN S.A., Effects of Ibuprofen and Resistance Training on Bone and Muscle: A Randomized Controlled Trial in Older Women, Med. Sci. Sports Exerc., 2017, 49 (4), 633–640.
  • [4] FELSON D.T., NEOGI T., Emerging Treatment Models in Rheumatology: Challenges for Osteoarthritis Trials, Arthritis Rheumatol., 2018, 70 (8), 1175–1181.
  • [5] GAN T.J., Diclofenac: an update on its mechanism of action and safety profile, Curr. Med. Res. Opin., 2010, 26 (7), 1715–1731.
  • [6] GLATT V., CANALIS E., STADMAYER L., BOUXSEIN M.L., Age--related changes in trabecular architecture differ in female and male C57BL/6J mice, J. Bone Miner. Res., 2007, 22 (8), 1197–1207.
  • [7] HART N.H., NIMPHIUS S., RANTALAINEN T., IRELAND A., SIAFARIKAS A., NEWTON R.U., Mechanical basis of bone strength: influence of bone material, bone structure and muscle action, J. Musculoskelet. Neuronal Interact., 2017, 17 (3), 114–139.
  • [8] HOLLINSKI R., OSTERBERG A., POLEI S., LINDNER T., CANTRÉ D., MITTLMEIER T., VOLLMAR B., BRUHN S., MÜLLER-HILKE B., Young and healthy C57BL/6 J mice performing sprint interval training reveal gender- and site-specific changes to the cortical bone, Sci. Rep., 2018, 8 (1), 1529.
  • [9] JAIN N.X., BARR-GILLESPIE A.E., CLARK B.D., KIETRYS D.M., WADE C.K., LITVIN J., POPOFF S.N., BARBE M.F., Bone loss from high repetitive high force loading is prevented by ibuprofen treatment, J. Musculoskelet. Neuronal Interact., 2014, 14 (1), 78–94.
  • [10] JANKOWSKI C.M., SHEA K., BARRY D.W., LINNEBUR S.A., WOLFE P., KITTELSON J., SCHWARTZ R.S., KOHRT W.M., Timing of Ibuprofen Use and Musculoskeletal Adaptations to Exercise Training in Older Adults, Bone Rep., 2015, 1, 1–8.
  • [11] JING D., LUO E., CAI J., TONG S., ZHAI M., SHEN G., WANG X., LUO Z., Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption, J. Bone Miner. Res., 2016, 31 (9), 17131724.
  • [12] KIM D.G., JEONG Y.H., MCKICHAEL B.K., BAHLER M., BODNYK K., SEDLAR R., LEE B.S., Relationships of bone characteristics in MYO9B deficient femurs, J. Mech. Behav. Biomed. Mater, 2018, 84, 99–107.
  • [13] KODAMA Y., UMEMURA Y., NAGASAWA S., BEAMER W.G., DONAHUE L.R., ROSEN C.R., BAYLINK D.J., FARLEY J.R., Exercise and mechanical loading increase periosteal bone formation and whole bone strength in C57BL/6J mice but not in C3H/Hej mice, Calcif Tissue Int., 2000, 66 (4), 298–306.
  • [14] KOHN D.H., SAHAR N.D., WALLACE J.M., GOLCUK K., MORRIS M.D., Exercise alters mineral and matrix composition in the absence of adding new bone, Cells Tissues Organs, 2009, 189 (1–4), 33–37.
  • [15] KRISCHAK G.D., AUGAT P., BLAKYTNY R., CLAES L., KINZL L., BECK A., The non-steroidal anti-inflammatory drug diclofenac reduces appearance of osteoblasts in bone defect healing in rats, Arch. Orthop. Trauma Surg., 2007, 127 (6), 453–458.
  • [16] MARKIEWICZ-GÓRKA I., KUROPKA P., JANUSZEWSKA L., JAREMKÓW A., PAWŁOWSKI P., PAWLAS N., PROKOPOWICZ A., GONZALEZ E., NIKODEM A., PAWLAS K., Influence of physical training on markers of bone turnover, mechanical properties, morphological alterations, density and mineral contents in the femur of rats exposed to cadmium and/or alcohol, Toxicol. Ind. Health., 2019, Apr., 35 (4), 277–293, DOI: 10.1177/ 0748233719831534.
  • [17] MARQUES M.C., BELINHA J., OLIVEIRA A.F., CESPEDES M.C.M., JORGE R.M.N., A 3D trabecular bone homogenization technique, Acta Bioeng. Biomech., 2020, 22 (3), 139–152.
  • [18] MATUSZEWSKA A., NOWAK B., NIKODEM A., JĘDRZEJUK D., SZKUDLAREK D., ZDUNIAK K., FILIPIAK J., SZNADRUK--BENDER M., TOMKALSKI T., CEREMUGA I., BOLANOWSKI M., SZELĄG A., Effects of efavirenz and tenofovir on bone tissue in Wistar rats, Adv. Clin. Exp. Med., 2020, Nov., 29 (11), 1265–1275, DOI: 10.17219/acem/127684.
  • [19] POLI V., BALENA R., FATTORI E., MARKATOS A., YAMAMOTO M., TANAKA H., CILIBERTO G., RODAN G.A., COSTANTINI F., Interleukin-6-deficient mice are protected from bone loss caused by estrogen depletion, Embo J., 1994, 13 (5), 1189–1196.
  • [20] POUNTOS I., GEORGOULI T., CALORI G.M., GIANNOUDIS P.V., Do nonsteroidal anti-inflammatory drugs affect bone healing? A critical analysis, Sci. World J., 2012, 2012, 606404.
  • [21] RAMIREZ-GARCIA-LUNA J.L., WONG T.H., CHAN D., AL--SARAN Y., AWLIA A., ABOU-RJEILI M., OUELLET S., AKOURY E., LEMARIÉ C.A., HENDERSON J.E., MARTINEAU P.A., Defective bone repair in diclofenac treated C57Bl6 mice with and without lipopolysaccharide induced systemic inflammation, J. Cell Physiol., 2019, 234 (3), 3078–3087.
  • [22] ROBERTSON G., XIE C., CHEN D., AWAD H., SCHWARZ E.M., O’KEEFE R.J., GULDBERG R.E., ZHANG X., Alteration of femoral bone morphology and density in COX-2-/- mice, Bone, 2006, 39 (4), 767–772.
  • [23] SPIRO A.S., BEIL F.T., BARANOWSKY A., BARVENCIK F., SCHILLING A.F., NGUYEN K., KHADEM S., SEITZ S., RUEGER J.M., SCHINKE T., AMLING M., BMP-7-induced ectopic bone formation and fracture healing is impaired by systemic NSAID application in C57BL/6-mice, J. Orthop. Res., 2010, 28 (6), 785–791.
  • [24] SUGIYAMA T., MEAKIN L.B., GALEA G.L., LANYON L.E., PRICE J.S., The cyclooxygenase-2 selective inhibitor NS-398 does not influence trabecular or cortical bone gain resulting from repeated mechanical loading in female mice, Osteoporos. Int., 2013, 24 (1), 383–388.
  • [25] WALLACE J.M., RAJACHAR R.M., ALLEN M.R., BLOOMFIELD S.A., ROBEY P.G., YOUNG M.F., KOHN D.H., Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific, Bone, 2007, 40 (4), 1120–1127.
  • [26] WALLACE J.M., RON M.S., KOHN D.H., Short-term exercise in mice increases tibial post-yield mechanical properties while two weeks of latency following exercise increases tissue-level strength, Calcif. Tissue Int., 2009, 84 (4), 297–304.
  • [27] WOJTKÓW M., KIEŁBOWICZ Z., BIEŻYŃSKI J., PEZOWICZ C., Quantitative and qualitative assessment of the impact of osteoporosis on endplate layers, Biocybern. Biomed. Eng., 2019, 39 (3), 797–805.
  • [28] WOLFRAM U., SCHWIEDRZIK J., Post-yield and failure properties of cortical bone, Bonekey Rep., 2016, 5, 829.
  • [29] WU J., WANG X., CHIBA H., HIGUCHI H., NAKATANI T., EZAKI O., CUI H., YAMADA K., ISHIMI Y., Combined intervention of soy isoflavone and moderate exercise prevents body fat elevation and bone loss in ovariectomized mice, Metabolism, 2004, 53 (7), 942–948.
  • [30] YENI Y.N., SHAFFER R.R., BAKER K.C., DONG X.N., GRIMM M.J., LES C.M., FYHRIE D.P., The effect of yield damage on the viscoelastic properties of cortical bone tissue as measured by dynamic mechanical analysis, J. Biomed. Mater. Res. A, 2007, 82 (3), 530–537.
  • [31] ZHANG R., GONG H., ZHU D., MA R., FANG J., FAN Y., Multi-level femoral morphology and mechanical properties of rats of different ages, Bone, 2015, 76, 76–87.
  • [32] ZHOU S., WANG G., QIAO L., GE Q., CHEN D., XU Z., SHI D., DAI J., QIN J., TENG H., JIANG Q., Age-dependent variations of cancellous bone in response to ovariectomy in C57BL/6J mice, Exp. Ther. Med., 2018, 15 (4), 3623–3632.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a19a935c-5bf8-4cd0-8a59-8aab1c87da91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.