Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Radioactive aerosols in the confined workplace are a major source of internal exposure hazards for workers. Cloud-type radioactive aerosol elimination system (CRAES) have great potential for radioactive aerosol capture due to their high adsorption capacity, lack of cartridges and less secondary contamination. A CRAES was designed and constructed, and a FeOOH/rGO composite was directly prepared by a hydro-thermal method to characterise and analyse its morphology, chemical structure and removal efficiency for simulated radioactive aerosols. The results show that the FeOOH/rGO composite works in synergy with the CRAES to effectively improve the removal efficiency of simulated radioactive aerosols. A 30-minute simulated radioactive aerosol removal rate of 94.52% was achieved when using the experimentally optimized composite inhibitor amount of 2 mg/L FeOOH/rGO with 0.2 g/L PVA as a surfactant. Therefore, the CRAES coupled with the composite inhibitor FeOOH/rGO has broad application potential for the synergistic treatment of radioactive aerosols.
Czasopismo
Rocznik
Tom
Strony
10--18
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wz.
Twórcy
autor
- College of Missile Engineering, Rocket Force University of Engineering, China
autor
- College of Missile Engineering, Rocket Force University of Engineering, China
autor
- College of Missile Engineering, Rocket Force University of Engineering, China
autor
- School of Marine Science and Technology, Harbin Institute of Technology, China
autor
- College of Missile Engineering, Rocket Force University of Engineering, China
autor
- College of Missile Engineering, Rocket Force University of Engineering, China
Bibliografia
- 1. Pan g, C.X., You, H.H., Liang, L.L., Lin, X.Y., Zhang, Y.P., Zhang, H., Pan, X.H., Hu, Y., Chen, Y., Luo, X.G. & Wang, H.J. (2023). Bamboo pulp-based electret fiber aerogel with enhanced electret performance by P-phenylenediamine modification for simulated radioactive aerosol purification in confined spaces. Colloids Surf. A Physicochem. Eng. Asp., 658, 130502. DOI: 10.1016/j.colsurfa.2022.130502.
- 2. Xue, Y., Chen, J., Liu, P., Gao, J.Z., Gui, Y.Y., Cheng, W.T., Mu, F.Q. & Yan, Y.D. (2022). An efficient and high-capacity porous functionalized-membranes for uranium recovery from wastewater. Colloids Surf. A Physicochem. Eng. Asp., 647. DOI: 10.1016/J.COLSURFA.2022.129032.
- 3. Dong, X.A., Cw, A., Wei, D.A. & Hwa, B. (2020). Modelling dispersion of radioactive aerosols and occupational dose assessment of workers in a large nuclear plant industrial workshop with a stratified air conditioning system-sciencedirect. Environ. Technol. Innov., 19. DOI: 10.1016/j.eti.2020.100828.
- 4. Lin, L., Chen, H., Lin, L. & Xu, Q. (2009). The literature review of radioactive aerosol purification. Ind. Saf. Environ. Prot., 35, 1–3.
- 5. Lee, M.H., Yang, W., Chae, N. & Choi, S. (2019). Performance assessment of hepa filter against radioactive aerosols from metal cutting during nuclear decommissioning. Nucl. Eng. Technol., 52(5). DOI: 10.1016/j.net.2019.10.017.
- 6. El- Hussein, A. (2005). A study on natural radiation exposure in different realistic living rooms, J. Environ. Radioact., 79, 355–367. DOI: 10.1016/j. jenvrad.2004.08.009.
- 7. Tripathi S.N. & Harrision R.G. (2001). Scavenging of electrifiedradioactive aerosol. Atmos. Environ., 35(33), 5817–5821. DOI: 10.1016/s1352-2310(01)00299-0.
- 8. Ren, H.Y., Li, J., Yu, F. & Liang, S.L. (2020). Current situation and prospect of radioactive aerosol removal technology. Environ. Sci. Manag., 45, 92–96. DOI: 10.3969/j. issn.1673–1212.2020.10.020.
- 9. Yang, T., Liu, Y. & Xing, P. (2003). Study on filtration efficiency of glass fiber filter for aerosols. Radiat. Prot., 23, 49–54. DOI: 10.3321/j.issn:1000-8187.2003.01.009.
- 10. Wang, T., Wang, S. & Gao, Y. (2021). Emergency control and elinination of radioactive aerosol diffusion in environmental pollution accidents. Nucl. Saf. 20, 17–24. DOI: 10.16432/j. cnki.1672-5360.2021.03.004.
- 11. Wang, L.J., Xu, X.C., Niu, X.H. & Pan, J.M. (2021). Colorimetric detection and membrane removal of arsenate by a multifunctional L-arginine modified FeOOH. Sep. Purif. Technol., 258, 118021. DOI: 10.1016/j.seppur.2020.118021.
- 12. Ding, S.J., Lu, J.W., Ding, Z.C., Li, N., Fu, F.L. & Tang, B. (2016). Cr (VI) removal by mesoporous FeOOH polymorphs: performance and mechanism. RSC Adv., 6(84). DOI: 10.1039/c6ra14522a.
- 13. U.S . (2002). Department of Energy. Innovative technology summary report: fog and strip decontamination technology for use in D&D environments. LANL Release Number: LAUR-03-1558.
- 14. Berger, C., Song, Z.M., Li, T.B. & Ogbazghi, A.Y. (2004). Ultrathin Epitaxial Graphite: 2D Electron Gas roperties and a Route toward Graphene-based Nanoelectronics. J. Phys. Chem., 108(52), 19912–19916. DOI: 10.1021/jp040650f.
- 15. Nair, R.R., Blake, P. & Grigorenko, A.N. (2008). Fine Structure Constant Denes Visual Transparency of Graphene. Sci., 320, 1308. DOI: 10.1126/science.1156965.
- 16. Ren, J., Cao, T., Yang, X. & Tao, L. (2020). Ultrafiltration treatment of wastewater contained heavy metals complexed with palygorskite. Pol. J. Chem. Technol., 22(4), 1–9. DOI: 10.2478/pjct-2020-0031.
- 17. Abdeldaiem, M., Sánchez-Polo, M., Rashed, A., Kamal, N. & Said, N. (2019). Adsorption mechanism and modelling of hydrocarbon contaminants onto rice straw activated carbons. Pol. J. Chem. Technol., 21(4), 1–12. DOI: 10.2478/pjct-2019-0032.
- 18. Wang, B., Li, S.Q., Dong, S.J., Xin, R.B., Jin, R.Z., Zhang, Y.M., Dong, K.J. & Jiang, Y.C. (2018). A New Fine Particle Removal Technology: Cloud-Air-Purifying. Ind. Eng. Chem. Res., 57(34), 11815–11825. DOI: 10.1021/acs.iecr.8b03034.
- 19. Hummers, W.S. & Offeman, R.E., (1958). Preparation of graphitic oxide. J. Am. Chem. Soc., 80, 1339.
- 20. Su, J., Jia, Y., Shi, M.L., Shen, K.K., & Zhang, J.Q. (2022). Highly efficient unsymmetrical dimethylhydrazine removal from wastewater using MIL-53(Al)-derived carbons: Adsorption performance and mechanisms exploration. J. Environ. Chem. Eng., 10(6), 108975. DOI: 10.1016/j.jece.2022.108975.
- 21. Zou, Z.G., Yu, H.J., Long, F. & Fan, Y.H. (2011). Preparation of Graphene Oxide by Ultrasound-Assisted Hummers Method. Chin. J. Inorg. Chem., 27(09):1753–1757.
- 22. Zhou, Q., Lin, Y.X., Shu, J., Zhang, K.Y., Yu, Z.Z. & Tang, D.P. (2017). Reduced graphene oxide-functionalized FeOOH for signal-on photoelectrochemical sensing of prostate-specific antigen with bioresponsive controlled release system. Biosens. and Bioelectron., 98, 15–21. DOI: 10.1016/j. bios.2017.06.033.
- 23. Kirpalani, D.M. & Suzuki, K. (2011). Ethanol enrichment from ethanol-water mixtures using high frequency ultrasonic atomization. Ultrason. Sonochem., 18(5), 1012–1017. DOI: 10.1016/j.ultsonch.2010.05.013.
- 24. Trinh, V., Van, H., Pham, Q., Trinh, M. & Bui, H. (2020). Treatment of medical solid waste using an Air Flow controlled incinerator. Pol. J. Chem. Technol., 22(1) 29–34. DOI: 10.2478/pjct-2020-0005.
- 25. Zhou, Y., Bao, Q.L., Tang, L.A.L., Zhong, Y.L. & Loh, K.P. (2009). Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chem. of Mater., 21(13), 2950–2956. DOI: 10.1021/cm9006603.
- 26. Qiu, J.X., Zhang, P., Ling, M., Li, S., Liu, P.R., Zhao, H.J. & Zhang, S.Q. (2012). Photocatalytic Synthesis of TiO2 and Reduced Graphene Oxide Nanocomposite for Lithium Ion Battery. ACS Appl. Mater. Interface., DOI: 10.1021/am300722d.
- 27. Han, Y., & Lu, Y. (2009). Characterization and electrical properties of conductive polymer/colloidal graphite oxide nanocomposites. Compos. Sci. Technol., 69(7–8), 1231–1237. DOI: 10.1016/j.compscitech.2009.02.028.
- 28. Yang, Z., Liu, X., Liu, X., Wu, J. & Yu, Z. (2021). Preparation of β-cyclodextrin/graphene oxide and its adsorption properties for methylene blue. Colloids Surf., B, 111605. DOI: 10.1016/j.colsurfb.2021.111605.
- 29. Lei, C., Wen, F., Chen, J., Chen, W. & Wang, B. (2021). Mussel-inspired synthesis of magnetic carboxymethyl chitosan aerogel for removal cationic and anionic dyes from aqueous solution. Polym., 213(26), 123316. DOI: 10.1016/j. polymer.2020.123316.
- 30. Travlou, N.A., Kyzas, G.Z., Lazaridis, N.K., & Deliyanni, E.A. (2013). Functionalization of Graphite Oxide with Magnetic Chitosan for the Preparation of a Nanocomposite Dye Adsorbent. Langmuir, 29(5), 1657–1668. DOI: 10.1021/la304696y.
- 31. Geng, F.X., Zhao, Z.G., Geng, J.X., Cong, H.T. & Cheng H.M. (2007). A simple and low-temperature hydrothermal route for the synthesis of tubular α-FeOOH. Mater. Lett., 61(26), 4794–4796. DOI: 10.1016/j.matlet.2007.03.036.
- 32. Zhang, J.Q., Jia, Y. & Lv, X.M. 2023. View of the use of Cloud-Air-Purifying in radioactive aerosol purification. Appl. Chem. Ind. 01, 223–226+232. DOI: 10.16581/j.cnki.issn1671-3206.20221214.003.
- 33. Pramod, K., Paul, A.B. & Klaus, W. 2020. Aerosol Measurement: Principles, Techniques and Applications. Beijing: Chemical Industry Press.
- 34. Striolo, A. (2019). Studying surfactants adsorption on heterogeneous substrates. Curr. Opin. Chem. Eng. 23, 115–122. DOI: 10.1016/j.coche.2019.03.009.
- 35. Xu, J. C., Zhang, J. & Yu, Y. (2016). Characteristics of vapor condensation on coal-fired fine particles. Energy & Fuels. 30(3), 1822–1828. DOI: 10.1021/acs. energyfuels. 5b02200.
- 36. Bao, J.J., Yang, L.J. & Guo, W.W. (2012). Improving the removal of fine particles in the WFGD system by adding wetting agent. Energy & Fuels. 26(8), 4924–4931. DOI: 10.1021/ef3007195.
- 37. Mason, B.J. (1978). Cloud physics. Beijing: Science Press.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a199eedd-b4ea-4c07-a801-c806494330f4