PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing the shape of a compression-ignition engine combustion chamber by using simulation tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern solutions used in compression-ignition internal combustion engines are quite similar to each other. The use of high-pressure, direct fuel injection results in high combustion rates with controlled exhaust emissions. One of the combustion system quality criteria is to obtain adequately high thermodynamic indicators of the combustion process, which are obtained through, among others, the right combustion chamber geometry. Its shape influences the fuel atomization process, turbulence of fuel dose, evaporation and the combustion process. Optimizing the combustion chamber shape is one of the decisive factors proving the correct execution of the combustion process. This article presents the methodology of choosing the combustion chamber shape (changes of three selected combustion chamber dimensions) by using the optimization methods. Generating multidimensional data while maintaining the correlation structure was performed by using the Latin hypercube method. Chamber optimization was carried out by using the Nelder-Mead method. The combustion chamber shape was optimized for three engine load values (determined by the average indicated pressure) at selected engine operating conditions. The presented method of engine combustion chamber optimization can be used in low and high speed diesel propulsion engines (especially in maritime transport applications).
Rocznik
Tom
Strony
138--146
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Poznan University of Technology Piotrowo 3 60-965 Poznan Poland
  • Poznan University of Technology Piotrowo 3 60-965 Poznan Poland
Bibliografia
  • 1. AVL FIRE, ESE Diesel, Emission Module, Version 2017.
  • 2. Channappagoudra M., Ramesh K., Manavendra G.: Comparative study of standard engine and modified engine with different piston bowl geometries operated with B20 fuel blend. Renewable Energy, 133, 2019, pp. 216–232.
  • 3. Gafoor A.C.P., Gupta R.: Numerical investigation of piston bowl geometry and swirl ratio on emission from diesel engines. Energy Conversion and Management, 101, 2015, pp. 541–551.
  • 4. Heywood J.: Internal Combustion Engine Fundamentals. McGraw-Hill Book Company, New York 1988.
  • 5. Khan S., Panua R., Bose P.K.: Combined effects of piston bowl geometry and spray pattern on mixing, combustion and emissions of a diesel engine: A numerical approach. Fuel, 225, 2018, pp. 203–217.
  • 6. Maehara N., Shimoda Y.: Application of the genetic algorithm and downhill simplex methods (Nelder–Mead methods) in the search for the optimum chiller configuration. Applied Thermal Engineering, 61(2), 2013, pp. 433–442.
  • 7. Marine engine programme. MAN energy solution. 2nd edition 2018. www.marine.man-es.com
  • 8. Naber J.D., Reitz R.D. Modeling engine spray/wall impingement. SAE Technical Paper 880107.
  • 9. Navid A., Khalilarya S., Abbasi M.: Diesel engine optimization with multi-objective performance characteristics by nonevolutionary Nelder-Mead algorithm: Sobol sequence and Latin hypercube sampling methods comparison in DoE process. Fuel, 228, 2018, pp. 349–367.
  • 10. Pielecha I., Pielecha J., Skowron M. et al.: The influence of diesel oil improvers on indices of atomisation and combustion in high-efficiency engines. Polish Maritime Research, 3(95), vol. 24, 2017, pp. 99–105.
  • 11. Pielecha I., Wisłocki K., Cieślik W. et al.: Application of IMEP and MBF50 indexes for controlling combustion in dual-fuel reciprocating engine. Applied Thermal Engineering, 132, 2018, pp. 188–195.
  • 12. Shields M.D., Zhang J.: The generalization of Latin hypercube sampling, Reliability Engineering & System Safety, 148, 2016, pp. 96–108.
  • 13. Taghavifar H.: Towards multiobjective Nelder-Mead optimization of a HSDI diesel engine: Application of Latin hypercube design-explorer with SVM modeling approach. Energy Conversion and Management, 143, 2017, pp. 150–161.
  • 14. Vedharaj S., Vallinayagam R., Yang W.M. et al.: Optimization of combustion bowl geometry for the operation of kapok biodiesel – Diesel blends in a stationary diesel engine. Fuel, 139, 2015, 561–567.
  • 15. Wärtsilä Solutions for Marine and Oil & Gas Markets. Wartsila 2018, wartsila.com.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a199c618-7111-43c3-b805-c247cd52cef0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.