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Abstract  
The main aim of the present paper is the implementation of a fault detection strategy to ensure the fault 

detection in a gas turbine which is presenting a complex system. This strategy is based on an adaptive hybrid 
neuro fuzzy inference technique which combines the advantages of both techniques of neuron networks and 
fuzzy logic, where, the objective is to maintain the desired performance of the studied gas turbine system in 
the presence of faults. On the other side,  the representation of fuzzy knowledge in the learning neural 
networks has to be accurate to provide significant improvements for modeling of the studied system dynamic 
behavior. The results presented in this paper proves clearly that the proposed detection technique allows the 
perfect detection of the studied gas turbine malfunctions, furthermore it shows that the use of the proposed 
technique based on the Adaptive Neuro-Fuzzy Interference System (ANFIS) approach which uses the 
adaptive learning mechanism of neuron networks and fuzzy inference techniques, can be a promising 
technique to be applied in several industrial application for faults detection. 

 
Key words: Faults detection, gas turbine, dynamic behavior, adaptive network based fuzzy  

inference systems (ANFIS). 
 

1. INTRODUCTION  
 

Taking into account the diagnosis impacts on a 
life cycle of industrial system, the decisions taken 
during the operation of such system affect 
profoundly the cost of their life cycle. In fact, the 
diagnosis system proposed in this work takes into 
account all operation phases of the studied gas 
turbine,  allows to detect the occurred faults of this 
complex system and provides the various diagnostic 
functions required to ensure maximum operating 
availability this system. Practically, most industrial 
systems are nonlinear and are characterized by 
uncertain parameters and / or variable over time, this 
issue can complicate their control task and involves 
difficulties in achieving good performance of these 
systems. Indeed, in the industrial literatures, several 
solutions have been proposed for solving such 
problems. some of these researches are presented in 
this paper briefly. 

Recently in 2016, Seixas M. et al. in [38] have 
proposed a variables modeling and a simulation of 
the wind turbine installed in an offshore, Hamid 
Asgari et al. in [11] have realized NARX type 
models for simulating the startup phase of a gas 
turbine with a single shaft, Samet E. Arda et al. in 

[36] have presented the non-linear dynamic 
modeling of a modular reactor cooled passively, 
Houman Hanachi et al. in [14] have tested this last 
nonlinear modeling to estimate the state of non-
Gaussian stochastic system with input for the 
degradation analysis of a gas turbine.   

 
Other studies have tested the effectiveness of 

diagnostic approaches based on artificial 
intelligence; In 2016, Bahareh Pourbabaee et al. in 
[2] have made a robust approach of detection with 
isolation for faults sensors in gas turbine subject to 
variable parameters uncertainties in time, Amozegar 
M. et al. in [1] have realize the fault detection and 
isolation applied to a gas turbine using dynamic 
neural networks identifiers. Also, Cristiano Hora 
Fontes Pereira and Otacílio in [8] have propose a 
detection and isolation strategy of faults in gas 
turbine based on pattern recognition techniques and 
Ehsan Mohammadi and Morteza Montazeri Gh-have 
in [9] have study the active faults tolerant control 
applied to a gas turbine. Mohamed Ben Rahmoune 
et al.  in [28] have realize fault diagnosis in gas 
turbine based on neural networks applied to the 
monitoring of speed vibrations and Benrabeh Djaidir 
et al. in [5] have present a combined approach to the 
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supervision and the detection of vibrations in a gas 
turbine using artificial neural networks with wavelet.  

In 2015, Jiandong Duan et al. in [15] have 
realized a nonlinear modeling of a micro gas turbine, 
Sina Tayarani-Bathaie S. and Khorasani K in [39] 
have realize the detection of faults in a gas turbine 
using neural networks, Barsali S. et al. in [3] have 
presented the dynamic modeling of a biomass plant 
using micro gas turbine, Soheil Ghabraei et al. [40] 
have studied an industrial turbine boiler in the 
presence of modeling inaccuracies and external 
disturbance using adaptive multivariate approach for 
their control.   

In 2014, Nikpey H. et al. in [30] have presented 
a modeling and an experimental evaluation of a 
turbine variable for its control and supervision, 
Sadough Vanini Z.N. et al. in [34] have made the 
fault detection and isolation of a dual rotor gas 
turbine using dynamic neural networks with a multi-
model approach.  

Although other works was realized in the 
industrial literature showing the effectiveness of 
artificial intelligence-based approaches using 
artificial neural networks and fuzzy logic, for 
modeling the gas turbines variables used in different 
industrial sectors.  

Recently, the diagnostic systems have been 
widely adapted to several industrial applications in 
order to find predictive solutions for the problems of 
exploitation and operation of industrial processes. 
However, the need to improve the ability of a 
diagnostic system in industrial processes, obliges 
industrial operators to use the predictive approaches 
in real time to quickly detect potential faults even 
before their appearances. It is obvious that the use of 
anticipate accurate diagnosis actions will predict the 
faults at its birth before it can be significant faults 
that can degrade or destroy the whole system.  

Hence, a reliable failure diagnostic system is 
required, especially for the heavy equipments 
installed in vital industrial plants. It is in this context 
that this work proposes the development of a 
malfunction detection approach of a gas turbine 
based on a hybrid adaptive neuro fuzzy inference 
system approach (ANFIS), where the main aim is to 
detect accurately the faults and hence to avoid the 
degradation of the gas turbine system, further more 
to increase its safety and to decide future decisions 
affecting the state of operation of this industrial 
equipment. This works is based on real data 
collected from onsite of the studied gas turbine 
plant. Several simulation results are presented based 
on these obtained data to show the effectiveness and 
the validity of the proposed strategy. 

 
 
 
 
 

2. DETECTION OF GAS TURBINE 
MALFUNCTIONS  

 
In many industrial sectors, especially in the oil 

industry, the monitoring activity in the rotating 
machines is a very complex task which requires a lot 
of information and data concerning the operation of 
these complex industrial equipment [4, 10, 32 and 
33]. Indeed, the current development of new 
technologies has enabled the improvement of the 
performances that are expressed through different 
devices, and has contributed to the development  of 
the monitoring and the control of the industrial 
systems facilities. This work falls within the 
framework of malfunction detection of a gas turbine 
faults using an adaptive hybrid approach with a 
neuro fuzzy inference system. The proposes 
technique presented in this paper  allows the access 
to the diagnosis of this kind of rotating machine.  

 
2.1. GAS TURBINE MODELING  

In this work, a two shafts gas turbine type GE 
MS5002C is studied  Fig. 1. This gas turbine is 
being installed in a gas compression station  which 
is located at Hassi Messaoud in south Algeria. The 
operating parameters this gas turbine are presented 
in Table 1. To start up the presented two shafts gas 
turbine, a mechanical torque is necessary at the 
mechanical input side of the axial compressor (AC). 
This turbine is mechanically separated into two 
sections; the high pressure section (HP) and the low 
pressure section  (LP). The (HP) section operates at 
a constant speed within a defined power range and it 
continues in the same time driving the axial 
compressor after the disconnection of the 
mechanical torque which is unnecessary in this 
stage. The (LP) section works with a variable speed 
and it can change its rotational speed independently 
of the (HP) section. 

 
Tab 1. Gas turbine GE MS5002C characteristics 

 
Series gas turbine model Ms- 5002C LHE 
 Number of compressor 
stages   16 

Compressor type               Axial flow, large 
capacity 

Number of turbine stages Twin-Shafts 
 Cycle                            5100 rpm  Haute-P  et 

4903 
Shaft speed           rpm  Base-P 
Command           Mark VI 

SPEEDTRONIC 
Operation type                 Continuous 
R- combustion chamber   98% 
Basic performance        38000 hp- condition ISO 
Inlet temperature.             59F 
Exhaust pressure                14.7 PSI 
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Fig. 1. Examined two shafts gas turbine system 

 
The ideal thermal process of the studied gas 

turbine is represented in the T-S digraph as shown in 
Fig. 2. 
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Fig. 2. Gas turbine cycle diagram with two trees 

MS5002C 
 
In this T-S digraph the compressor temperature 

is calculated by the following equation: 
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Where 1T  and 2T  are the ambient temperature 

and the inside compressor temperature respectively, 

pr  is the pressure ratio, aγ  is the specific heat ratio 

, where 4.1/ == vCpC
a

aγ , cη  is the efficiency 

of the compressor expressed by 
( ) ( )1212 TTTT sc −−=η . The temperature of the 

exhaust gas of the gas turbine (LP) section 5T  is 

expressed as follows: 
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Where 4T  is the wheel space temperature, tη  is 
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The temperature of the exhaust gas of the gas 
turbine (HP) section is expressed as follows: 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−−=
−

g

g

p

t

r
TT

γ
γ

η 134
111            (3) 

Where 3T  is the combustion chamber 

temperature, with 333.1=gγ . 

 
The compressor input power which is the output 

power of the gas turbine (HP) section is given as 
follows: 
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Where am&  is the air mass flow, gm&  is the gas 

mass flow, pgC  is the specific heat at constant gas 

pressure, paC  is the specific heat at constant air 

pressure, with 149.1  and  005.1 == pgpa CC . 

 
In addition, the thermal efficiency of  the T-S 

cycle is expressed as follows: 
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2.2. ADAPTIVE APPROACH BASED ON  

A NEURO FUZZY INFERENCE SYSTEM 
The fuzzy modeling is based on more 

sophisticated tools using the concepts of the theory 
of fuzzy sets that require sometimes new theoretical 
developments for the representation of the nonlinear 
systems behavior [6, 7, 12, 16, 23 and 29]. This 
representation characterizes the relationship between 
the input and output variables of the system [13, 27, 
31 and 42]. The adaptive neuro-fuzzy inference 
systems  ANFIS have been used in several industrial 
applications, to improve their effectiveness in 
modeling , in control and in industrial diagnosis [17, 
18, 19, 20, 21, 22, 35, 37 and 41].  The main 
objective of this paper is to ensure the gas turbine 
fault detection system using a hybrid approach based 
on adaptive neuro fuzzy inference mechanism, and 
to design observers (residues) based on neuro-fuzzy 
model within a wider operation range of the studied 
gas turbine. 

To explore this adaptive approach with a neuro 
fuzzy inference system on the case of the studied gas 
turbine, a construction of fuzzy model is proposed 
as  an identification process of type Takagi-Sugeno-
Kang of this system  as shown in Fig. 3. Indeed, this 
process consists of five phases, to describe the 
behavior of the various input-output  variables of 
this complex system. The base of fuzzy rules is of 
the following form: 
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Where 1 x  and 2 x  are the inputs, 1A  and 2B  
are the fuzzy sets, 1y  and 2y  are the outputs of all 
defuzzification of neurons, ip  , ir  and iq  are the 

parameters of the thi  rule determined during the 
learning process. 
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Fig. 3. Adaptive neuro-fuzzy inference system 

 
The outputs of the first layer represent the 

degrees of membership of the input variables 1 x  

and 2 x  given by: 

( )  2,1       1 == ixO
iAi μ                 (7)                             

with ( )x
iAμ  is the membership function. 

Each node in the second layer is a fixed node 
type noted Π  and each of them includes in the 
output the product (AND operator fuzzy logic) of its 
inputs which corresponds to the degree of 
membership of the concerned rule: 

( ) ( ) 2,1       2 =×== ixxwO iBiAii μμ       (8)  
with ( )xiBμ  is the membership function. 
According to equation (9), each of the third node 

layer is also of fixed type and carries out the 
normalization of the weights of the fuzzy rules, it is 
expressed as follows: 
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where iw  this is the degree of membership. 
In the fourth layer, each node is adaptive and 

calculates the outputs of the rules by performing the 
following function: 
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i
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The fifth layer comprises a single neuron 
providing the output ANFIS by calculating the sum 
of the outputs of the previous layer. This output, 
which is also the output of the network, is 
determined by the following expression: 

                            

∑ ×==
i

iii fwfO 5                         (11) 

 
2.2.1. LEARNING ALGORITHM 
The learning ANFIS system is achieved from a 

data set for the identification of the premises and 
consequences parameters as shown in Fig. 4, where 
the ANFIS structure is fixed. In the case of the 
studied gas turbine modeling, a hybrid learning rule 
which combines a gradient descent algorithm with a 
least squares estimation is proposed. Hence the 
following expressions are obtained:  
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This is a linear combination of consistent 

modifiable parameters {p1, q1, r1, p2, q2 and r2}. It 
is important to note that in this algorithm, the 
parameters of the premises as well as the 
consequence parameters are optimized. 

Premises     
Settings 

No 

Backward pass 

Error estimate 

Gradient descent 
method 

Input 
layer

Consequent 
Settings 

Least squares 
Method 

Output signal node 

Forward pass 

  Output 
layerNo

Yes Yes 

Fig. 4. Learning of the ANFIS algorithm 
 

The MS5002C gas turbine modeling is 
performed by choosing seven input-output variables, 
these models allow to approach the behavior of this 
system by a collection of local models. They have a 
very important representative capacity [24, 25 and 
26]. Indeed, the number of necessary rules to 
approach a system to a certain degree of accuracy is 
generally reduced: 
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(14) 
Where cT  is the inside compressor temperature, 

tT  is the inside temperature of the turbine, combT  is 
the combustion chamber temperature, aW  is the 

mass flow of air, F  is the force, tP  is the pressure 

of the turbine, HPcP .  is the compressor pressure and 
WfΔ  is fuel flow. 

For each studied gas turbine variable, a series of 
data were used for its identification obtained from 
operating measurements data of the studied gas 
turbine. For example, for mass air flow variable, the 
network ANFIS model used is composed of three 
inputs and one output as shown in Fig. 5, and each 
input is fuzzified by three fuzzy sets of Gaussian 
type. 

 

 
 

Fig. 5. Network of mass air flow variable aWΔ  model 
 

2.3. NEURO FUZZY MODEL-BASED 
GENERATION OF RESIDUE 

The design of the proposed novel approach for 
detecting faults in a gas turbine system is carried out 
in this section as shown in Fig. 6. This approach is 
proposed in the framework of a gas turbine which is 
a nonlinear systems to determine the severity of a 
the detected faults. The idea is based on the 
quantitative analysis of the residues in the presence 
of faults in order to establish fault signatures. It is 
obvious that the use of fuzzy techniques will further 
characterize the correlation symptoms - faults. 
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Fig. 6. Diagnostic system based on the proposed model 

 
The basic principle of the proposed system  is 

shown in Fig. 7. It is consists of establishing the 
diagnosis based on the process measured values and 
the modeled process values. 

 

Process Residual 

Signatures of 
theoretical failures 

Signatures of 
instant failures 

Modelling 

Mesures 

Default? Comparison 

 

Fig. 7. Residuals generation system 
 

The detection process aims to determine the 
appearance and the time of  fault occurrence. To 
achieve this goal, the residues that are obtained by 
comparing the behavior of the system model to the 
real system are used. It is clear that the residues are 
representative of differences between the observed 
behavior of the system and the expected reference 
behavior when the system operates normally. These 
residues have generally a zero mean and a 
determined variance in the absence of malfunctions. 
A generic way to build a residue is to estimate the 
system output vector (.)ŷ . The estimated (.)ŷ  is 
then subtracted from the output signal (.)y  to form 
the following residue vector (.)r : 

)(ˆ)()( kykykr −=             (15) 
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In the presence of faults, the signal (.)r  differs 
remarkably from zero, and when the system is 
operating normally it will be equal to zero. 

In practice, the residue has not exactly zero value 
in the absence of faults because during the modeling 
phase, several simplifying assumptions are 
introduced leading to a model that does not 
accurately reflect the real system. In addition, the 
measurements obtained from the system are often 
including noise measurements. The residue vector is 
then expressed as follows: 

 
)(ˆ)()( kykykr m −=         (16) 

 
Where (.)my  is the measured output of the 

system which is composed in addition to the actual 
output (.)y , the noise of various kinds relating to 
instrumentation and the modeling uncertainties. In 
this situation, a simple detection method involves in 
comparing the value of the residue to a predefined 
threshold ε  (function modeling errors). An alarm is 
triggered at each crossing of this threshold: 

⎩
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Where (.)d represents the vector of faults. 
 
In the studied case, a set of residues (.)ir is 

firstly built and which is depending on the studied 
gas turbine faults. It presents the difference between 
the reference model output and the output of the 
actual model. Based on this results of residues, a 
more advanced residues are formed making basic 
residues insensitive to certain faults. To achieve this, 
a structuring of the generated residues set is 
performed to ensure the fault location from the 
residues of seven chosen variables of the studied gas 
turbine. These variables are : 

 

combT
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R *Δ
, 
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3. APPLICATION RESULTS 

 
For the investigation and tests of the proposed 

approach, the actual operating data of the studied 
gas turbine was used in adaptive neuro-fuzzy 
interference system modeling, to present the 
dynamics of the turbine in operational mode. Figure 
8 shows the fuel flow variations fW , Figure 9 

shows the variations of the force output F and the 
Fig. 10 shows the variations of compressor pressure 

HPCP .Δ . These three variables are used as inputs in 
the proposed adaptive neuro-fuzzy interference 
system ANFIS. 
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Fig. 8. Fuel flow variations fW  
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Fig. 9. Force output variation F  
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Fig. 10. Compressor pressure variations HPCP .Δ  

 
These three inputs ( fW , F and HPCP .Δ ) are 

used to generate the output aW  of the proposed 
adaptive neuro-fuzzy interference system ANFIS, 
each entry is fuzzified by three Gaussian fuzzy sets 
(Small, Medium and Large)  that are shown in Fig. 
11. To get the  ANFIS model. The fuzzy-neuro 
model contains the following parameters: 
� Gaussian membership functions,  
� 27 fuzzy rules;  
� 100 Iteration learning; 
� 05 layers; 
� 09 neurons in the first hidden layer 

(fuzzification); 
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� 27 neurons in the second hidden layer (fuzzy 
rules);  

� 27 neurons in the third hidden layer 
(normalization); 

� 27 neurons in the fourth concealed layer 
(linearization);  

� A neuron single in the fifth layer ( F ). 
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Fig. 11. Gaussian fuzzy membership function 

 

In this case, the behavior of the examined gas 
turbine system are analyzed. This scenario is often 
used to ensure that the instantaneous values of 
residues do not exceed in any case the limits defined 
by the detection thresholds, as shown in Figures 12 
to 18. In these Figures, no symptom should be 
found, because a false alarms was detected by the 
proposed diagnostic system.  

Figures 12, 13, 14, 15, 16, 17 and 18 
respectively, present  the variation of the actual 
output of the combustion chamber temperature 
( TcombR ), the variation of the turbine temperature 
( TtR ), the variation of the turbine pressure ( PtR ), 
the variation of compressor pressure ( PcR ), the 
variation of the compressor temperature ( TcR ), the 
mass air flow ( WaR ) and the force ( FRΔ ). The 

associated residue to each output variable is 
compared to the reference fuzzy model. 

Other fault detection tests in the studied gas 
turbine have been carried out, Figure 19 shows the 
appearance of a fault at the combustion chamber 
with the associate residues. This fault is depending 
on the temperature increase, which is due  to the 
malfunction of the combustion chamber cooling 
system.  The proposed technique  ANFIS proposed 
in this paper allow to detect accurately  the 
mentioned increase  of the temperature combT  in the 
combustion chamber, where the fault is in this case 
can be perfectly detected and localised with high 
accurately. On the other side, at the instant  2250 
min a fault is detected based on the detection of the 
residue value which exceeds the threshold range 
value of 42.0± . 

 

 
Fig. 12. Output of the combustion chamber temperature compared by the fuzzy model  

with their associated residue ( TcombR ) 
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Fig. 13. Output of the temperature of the turbine compared by the fuzzy model with their associated residue 

( TtR ) 
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Fig. 14. Turbine pressure output compared by the fuzzy model with their associated residue ( PtR ) 
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Fig. 15. Pressure compressor output compared by the fuzzy model with their associated residue ( PcR ) 
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Fig. 16. Compressor temperature output compared by the fuzzy model with their associated residue ( TcR ) 
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Fig. 17. Output of the mass flow of air compared by the fuzzy model with their associated residue ( WaR ) 
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Fig. 18. Output of force compared by the fuzzy model with their associated residue ( FR ) 
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Fig. 19. Appearance of a fault in gas turbine combustion chamber with there associate residues 

 
The evaluation of the obtained residue of the 

temperature variations in the combustion chamber is 
performed. Figure 20 shows the output of the second 
ANFIS model which is used to identify the presence 
of fault period. Depending on the output of the 
ANFIS, the zero value means that there is no fault, 
whereas when this output is equal to one, a fault is 
occurred and detected. In the same time, Figure 20 
presents  more details of the fault appearance based 
on the three dimension (3D) heat maps technique 
which can visualize clearly the degree of the fault, 
as the more concentrated red color is approaching, 
the alarm systems can be activated for the detection 
of the fault. 

Finally, the obtained results show clearly the 
robustness  and the flexibility of the proposed 

ANFIS technique used in this paper which is applied 
for the fault detection in a gas turbine system.  

 
3.1. RESIDUALS EVALUATIONS  
The method of  Shewhart mean technique is used 

for the evaluation of the obtained residues to achieve 
the detection of the abrupt change of a statistical 
characteristic of a signal using the principle of the 
control graph which is divided into three lines: the 
first line is presenting the centre, the other two lines 
are presenting the two boundaries that are named 
"upper control limit (UCL)" and "Lower control 
limit (LCL).". This method uses the normal 
distribution for the calculation of the standard 
deviation. 

 

 
Fig. 20. Output of the ANFIS model used to identify the presence of default with technical heat maps three 

dimension 
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In the general case when the number of samples 
100fN , the mean value and the standard deviation 

values can be calculated respectively by the 
following expressions:  

 

( )⎪
⎩

⎪
⎨

⎧

−=

=

∑

∑

Nx

NX

/

/

2μσ

μ                   (18) 

 
For a special samples size of n  the mean value 

and the standard deviation values can be calculated 
respectively as follows: 

           

( ) ( )⎪
⎩

⎪
⎨

⎧

−−=

=

∑

∑

1/

/

2 nmxs

nXm

i

i            (19) 

 
The process is centred and it follows the normal 

distribution (mean m  and standard deviation μ ) or 
sample follows a normal distribution (mean m  and 
standard deviation ns / ), hence: 

                                                               
( ) deviation tandard*  , 1 SKLCLUCL ±=       (20) 

 
where 1K  is the number standard deviation. 
 
The following table 2 summarizes the mean m  

and standard deviation of each output. 
 

Tabl. 2 Fault detection threshold 
The error m  S (UCL,LCL) 

Tcombe  510*2 −−  1.14 0.42 

Tte  510*4 −−  1.11 0.33 

Pte  810*9 −−  
0.001

3 0.004 

HPPce .  710*42.9 −−  0.07 0.2 

Tce  510*11.3 −  1 3 

Wae  610*2 −  0.33 1 

Fe  410*01.1 −  1 3 
 

This part of the work is dedicated to the 
evaluation of obtained residues. The experimental 
study presented in this paper is based on the 
proposed ANFIS approach, which is used for the 
evaluation of the obtained residues. Indeed, the data 
collected form inputs / outputs  measurements of the 
studied gas turbine system, allows to apply the 
ANFIS based diagnostic algorithm in real time. 
Figures 21, 22, 23, 24, 25 and 26 respectively show 
the variation of the obtained residues, that are 
compared with detection tests of the Shewhard mean 
of each variable of the studied gas turbine system. 
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Fig. 21. Residual variation of the combustion chamber temperature ( TcombR )  

with the test detection Shewhart 
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Fig. 22. Residual variation of the temperature of the turbine ( TtR ) with the test detection Shewhart 

Time (min)
0 50 100 150 200 250

S
ta

te
 o

f t
he

 a
la

rm

-0.1

-0.05

0

0.05

0.1

0.15

Time (min)
0 50 100 150 200 250

R
es

id
ue

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Error Pt

X: 140
Y: 0.03591

x 10

x 30

False alarm Detection

x 30

 
Fig. 23. Residual variation of turbine pressure ( PtR ) with the test detection Shewhart 
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Fig. 24. Residual variation of compressor pressure ( PcR ) with the test detection Shewhart 
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Fig. 25. Residual variation of compressor temperature ( TcR ) with the test detection Shewhart 
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Fig. 26. Residual variation of the mass air flow ( WaR ) with the test detection Shewhart 

 
After the step of generating the residues that are 

presented in Figures 21, 22, 23, 24, 25 and 26,  the 
next task is their evaluation for fault detection. For 
this, the neuro-fuzzy model of type ANFIS have 
been proposed to determine and to localize the type 
of faults which affects the gas turbine system based 
on the residues generated previously. Indeed, the 
method of maps of the Shewhart mean was used to 
detected the sudden change of studied system 
statistical characteristics. The results presented in 
this work show the effectiveness of  the proposed 
diagnostic system. 

 
4. CONCLUSION 

 
This paper presents the implementation of a 

hybrid approach based on ANFIS models for fault 
detection. It is proved in the present paper that the 
ANFIS system can be a very suitable tool for the 
design of an intelligent controllers, because it is able 
to ensure the inference with learning capacity of 
neural networks. The proposed approach is applied 
to detect the faults of a gas turbine GE MS5002C. 
The obtained simulation results show clearly the 

effectiveness of the proposed fault detection 
approach. where the validation is performed on real 
data obtained from onsite. On the other side, this 
proposed approach allows to integrate partial 
knowledge obtained from the expertise and data 
knowledge. This expert knowledge can be expressed 
in the form of fuzzy rules and constraints on the 
input fuzzification, while the training phase adjusts 
the undefined parameters (parameters consistent) 
using the obtained data. It is important to clarify that 
the ANFIS learning capacity allows to overcome the 
loss of accuracy issues from the expertise. So it is a 
beneficent system where the two sources of 
knowledge (rules and data) are used together to 
overcome the gaps of each other. This adaptive 
inference system is highly efficient and can be 
widely used in practical diagnostic application of a 
gas turbine system. 
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