PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water level forecasts for the eastern Gulf of Finland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of development and verification of the automated water level forecasting system for the eastern part of the Gulf of Finland with advance time 36 hours, which is based on two-dimensional hydrodynamic model of the Baltic Sea BSM3. The model is driven by the regional highresolution atmospheric model HIRLAM. Boundary conditions in the Danish Straits are received from a big scale model of the Baltic and North Seas (OPMODEL). The system works at the North-West Regional Administration of Hydro-Meteorological Service of Russia (NWHMS).
Słowa kluczowe
Rocznik
Strony
71--87
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
  • Flood Protection Department of St Petersburg Administration MORZASCHITA, St Petersburg, Russia
  • North-West Hydro-Meteorological Service, St Petersburg, Russia
  • North-West Hydro-Meteorological Service, St Petersburg, Russia
  • North-West Hydro-Meteorological Service, St Petersburg, Russia
Bibliografia
  • [1] Klevanny K. A., 1999, Protection of St. Petersburg against floods with uncompleted barrier: mathematical model study, Proc. 5th International Conference on Coastal & Port Engineering in Developing Countries, Cape Town, South Africa, 62-637.
  • [2] Belski N. I., 1954, Meteorological conditions of Leningrad floods, Proc. of the State Oceanographical Institute 27, 39, 43-80. (In Russian).
  • [3] Freidson A. I., 1965, Forecasting of the Neva Floods. Manual for the Short-Term Weather Forecasting, part 3, 2, 8. (In Russian).
  • [4] Krugljak G. A., K. S. Pomeranets, R. V. Piaskovsky, E. N. Turuntaeva, 1982, The catastrophic flood in Leningrad 23 September 1924 and its simulation, lzv. All Union Geographical Society I, 11-17. (In Russian).
  • [5] Piaskovsky R. V., K. S. Pomeranets, 1982, Floods. Mathematical Theory and Forecasts, Leningrad, Gidrometeoizdat Publ. (In Russian).
  • [6] Krugljak G. A., K. S. Pomeranets, R. V. Piaskovsky, 1984, Accuracy of the hydrodynamic model of floods in Leningrad, Probability analysis and modelling of oceanological processes. Leningrad, Hydrometeoizdat Publ., 159-163. (In Russian).
  • [7] Mertsalov A. N., 1964, Forecast of surface pressure for 12-18 hours, Collection of papers on regional synoptic 9, 3-39. (In Russian).
  • [8] Klevanny K. A., G. V. Matveyev, 1993, CARDINAL User's Manual, St Petersburg, Nevski Courier Publ.
  • [9] Klevanny K. A., G. V. Matveyev, N. E. Voltzinger, 1994, An integrated modeling system for coastal area dynamics, Int. J. for Numerical Methods in Fluids 19, 181-206.
  • [10] Klevanny K. A., G. V. Matveyev, 1995, Integrated modeling system CARDINAL and its applications to estimation of environmental impacts of coastal engineering in the Gulf of Finland, Proc. 4th International Conference on Coastal & Port Engineering in Developing Countries, Rio de Janeiro, Brazil, 3, 2120-2134.
  • [11] Klevanny K. A., 1999, Modelling of long-wave processes in geophysical fluid dynamics, Doctoral thesis. The Russian State Hydrometeorological University, St Petersburg. (In Russian).
  • [12] Thompson J. F., Z. U. A. Warsi, C. W. Mastin, 1982, Boundary-fitted co-ordinate system for numerical solution of partial differential equation. A review, J. Comp. Phys. 47 (2), 1-108.
  • [13] SmithS. D., E. G. Banke, 1975, Variation of the sea-surface drag coefficient with wind speed, Quart. J. Royal Meteorolog. Soc. 101, 429, 665-673.
  • [14] Gustafsson B., 1997, Interaction between Baltic Sea and North Sea, Deutsche Hydrographische Zeitschrift 49, 2/3, 165-183.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1913890-badb-4fbb-a415-df23f64a5277
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.