Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Signed partitions are used in order to describe a new discrete dynamical model whose configurations have fixed sum and whose evolution rules act in balancing from left and right on the configurations of the system. The resulting model can be considered as an extension to the case of signed partitions of the discrete dynamical system introduced by Brylawski in his classical paper concerning the dominance order of integer partitions. We provide a possible interpretation of our model as a simplified description of p − n junction between two semiconductors. We also show as our model can be embedded in a specific Brylawski dynamical system by means of the introduction of a new evolution rule.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--36
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
- Department of Informatics, Systems and Communications, University of Milano-Bicocca 20126 Milano, Italy
autor
- Department of Mathematics and Informatics, University of Calabria 87036 Arcavacata di Rende (CS), Italy
autor
- Department of Mathematics and Informatics, University of Calabria 87036 Arcavacata di Rende (CS), Italy
autor
- Department of Mathematics and Informatics, University of Calabria 87036 Arcavacata di Rende (CS), Italy
Bibliografia
- [1] Aledo J. A.,Martínez S., Valverde J. C.: Parallel dynamical systems over special digraph classes, Int. Journal. Comp. Math., 90 (10) (2013) 2039-2048.
- [2] Aledo J. A., Martínez S., Valverde J. C.: Updating method for the computation of orbits in parallel and sequential dynamical systems, Int. Journal. Comp. Math. 90 (9) (2013) 1796–1808.
- [3] Andrews G. E.: Euler’s ”De Partitio numerorum”, Bull. Amer. Math. Soc. 44 (2007), no.4, 561–573
- [4] Bianucci D., Cattaneo G.: Information entropy and granulation co-entropy of partitions and coverings: a summary, Transactions on Rough Sets (TRS), vol. 5656, Springer-Verlag, 2009, pp.15–66.
- [5] Bianucci D., Cattaneo G., Ciucci D.: Entropies and co-entropies of coverings with application to incomplete information systems. Fund. Inform., 75 (2007), 77–105.
- [6] Bianucci D., Cattaneo G., Ciucci D.: Entropy and co-entropy of partitions and coverings with applications to roughness theory, in Granular Computing: At the Junction of Fuzzy Sets and Rough Sets, Studies in Fuzziness and Soft Computing, vol. 224, Springer-Verlag, 2008, pp. 55–77.
- [7] Bisi C., Chiaselotti G.: A class of lattices and boolean functions related to the Manickam-Miklös-Singhi Conjecture, Adv. Geom. 13, no.1, (2013), 1–27.
- [8] Bisi C., Chiaselotti G., Oliverio P. A.: Sand Piles Models of Signed Partitions with d Piles, ISRN Combinatorics, vol. 2013, Article ID 615703, 7 pages, 2013. doi:10.1155/2013/615703.
- [9] Brylawski T.: The lattice of integer partitions, Discrete Mathematics, 6, (1973), 201–219.
- [10] Bianucci D., Cattaneo G., Comito M.: Sand piles: from physics to cellular automata models, Theoret. Comput. Sci., 436, (2012), 35–53.
- [11] Cervelle J., Formenti E.: On sand automata, in STACS 2003, Lecture Notes in Comput. Sci., 2607 Springer, Berlin, (2003), pp. 642–653.
- [12] Cervelle J., Formenti E., Masson B.: From sandpiles to sand automata, Theoret. Comput. Sci., 381, (2007), 1–28.
- [13] Chiaselotti G., Marino G., Nardi C.: A minimum problem for finite sets of real numbers with nonnegative sum, J. Appl. Math, 2012 (2012), Article ID 847958, 15 pages.
- [14] Chiaselotti G., Gentile T.,Marino G., Oliverio P. A.: Parallel Rank of Two Sandpile Models of Signed Integer Partitions, J. Appl. Math, 2013 (2013), Article ID 292143, 12 pages.
- [15] Dennunzio A., Guillon P., Masson B.: Stable dynamics of sand automata, in IFIP TCS, IFIP, 273 Springer, (2008), pp. 157–169.
- [16] Dennunzio A., Guillon P., Masson B.: Sand automata as cellular automata, Theoretical Computer Science, 410, (2009), 3962–3974.
- [17] Dhar D., Ruelle P., Sen S., Verma D.: Algebraic aspect of sandpile models, J. Phys. A, 28, (1995), 805–831.
- [18] Formenti E., Masson B.: On computing fixed points for generalized sandpiles, Int. J. of Unconvenctional Computing, 2, (2005), 51–72.
- [19] Formenti E., Masson B.: A note on fixed points of generalized ice piles models, Int. J. Unconv. Comp., 2(2), (2006), 183–191.
- [20] Formenti E., Masson B., Pisokas T.: On symmetric sandpiles, Lec. Notes in Comp. Sci., 4173, (2006), 676–685, Springer, Berlin.
- [21] Formenti E., Masson B., Pisokas T.: Advances in symmetric sandpiles, Fund. Inform., 76, (2007), 91–112.
- [22] Goles E.: Sand pile automata, Annales De l’ I. H. P. Sec. A, tome 56, 115, (1992), 75–90.
- [23] Goles E., Kiwi M. A.: One-dimensional Sand Piles, Cellular Automata and Related Models, Nonlinear phenomena in fluids, solids and other complex systems , (Santiago, 1990), 169–185, North-Holland, Amsterdam, 1991.
- [24] Goles E., Kiwi M. A.: Games on line graphs and sand piles, Theoret. Comput. Sci., 115, (1993), 321–349.
- [25] Goles E., Latapy M., Magnien C., Morvan M., Phan H., Sandpile models and lattices: a comprehensive survey, Theoret. Comput. Sci., 322, (2), (2004), 383–407.
- [26] Goles E.,MargensternM.: Universality of the chip-firing game, Theoret. Comput. Sci., 172, (1997), 121–134.
- [27] Goles E., Morvan M., Phan H.: Sandpile and order structure of integer partition, Discrete Appl. Math., 117, (2002), 51–64.
- [28] Goles E., MorvanM., Phan H.: Lattice structure and convergence of a game of cards, Ann. Comb., 6, (2002), 327–335.
- [29] Green C., Kleitman D. J.: Longest chains in the lattice of integer partitions ordered by majorization, Europ. J. Combinatoric ,7 (1986), 1–10.
- [30] Ha Le M., Phan H.: Strict partitions and discrete dynamical systems, Theoret. Comput. Sci., 389, (2007), 82–90.
- [31] Keith W. J.: A bijective toolkit for signed partitions. Ann. Comb., 15, (2011), 95–117.
- [32] Latapy M.: Partitions of an integer into powers, in: Proceedings of the conference Discrete Models, Combinatorics, Computation, and Geometry, Discrete Mathematics and Theoretical Computer Science, (2001), 215–228.
- [33] Latapy M.: Generalized integer partitions, tilings of zonotopes and lattices, RAIRO–Theoretical Informatics and Applications, 36, (4) (2002), 389–399.
- [34] Latapy M., Mantaci R., Morvan M., Phan H.: Structure of some sand piles model, Theoret. Comput. Sci., 262, (2001), 525–556.
- [35] Latapy M., Phan H.: The lattice structure of chip firing games, Physica D, 115, (2001), 69–82.
- [36] Latapy M., Phan H.: The lattice of integer partitions and its infinite extension, Disc. Math., 309, (2009), 1357–136
- [37] Macdonald I. G.: Symmetric functions and Hall polynomials. Second edition. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp.
- [38] Mantaci R., Massazza P.: From linear partitions to parallelogram polyominoes, Lecture Notes in Comput. Sci., 6795 Springer, Heidelberg, (2011), 350–361.
- [39] Phan H.: Two sided sand piles model and unimodal sequences, Theor. Inform. Appl., 42, (3), (2008), 631–646.
- [40] Phan H., Huong T.: On the stability of sand piles model, Theoret. Comput. Sci., 411, (3), (2010), 594–601.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1828c76-5103-4383-b4ce-460688c0f844