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1. Adaptive differential privacy 

 
Differential privacy is a perturbative statistical 
disclosure control mechanism that involves 
adding appropriate random noise to the 
statistical queries to provide a countermeasure 
against attacks directed at statistical answers. 
The differential privacy model allows a data 
solicitor to collect data and infer meaningful 
information from the data without individual 
record attribution, i.e., the mechanism allows  
a solicitor to collect sensitive data, but the data 
cannot be attributed to any party [7]. 

The application of differential privacy 
involves several techniques, including the 
injection of mathematical noise in the collect 
data, data hashing, subsampling and randomized 
data injection. Finding an appropriate tradeoff 
between the data accuracy and anonymity while 
adding a noise to the data remains a challenge  
as datasets users need precise data to work on 
and the data owners need to comply with  
the data privacy regulations [7]. 

The original work on differential privacy 
[2] defines the model in a following definition: 
A randomized function 𝐾 gives 𝜺-differential 
privacy if for all datasets 𝐷1 and 𝐷2 differing on 
at most one element, and all 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝐾): 

 
Pr [𝐾(𝐷1) ∈ 𝑆] ≤ exp (𝜀) × Pr [𝐾(𝐷2) ∈ 𝑆] 

A mechanism 𝐾 satisfying this definition 
assures that even if the participant removed  
his data from the data set, no outputs would 
release any statistics that could lead to 
identification of sensitive statistics related with 
the participant [2]. 

The adaptive differential privacy is a model 
proposed in [9] extends the base differential 
privacy model with information score and risk-
accuracy metric. The metrics allow to modulate 
the generated noise in such a way, that the 
retrieved result is affected according to the risk 
profile of the asked query and the risk-accuracy 
tradeoff required for the queried database. 

The adaptive differential privacy is a multi-
stage method that requires configuration and 
preprocessing of the data associations. Data 
associations, along with their risk profile 
measure (called S) are stored in a database: 
AR_DB. Historical queries are stored in 
HIST_DB. The information score metric is 
calculated based on the sensitivity level of the 
asked query calculated based on the AR_DB and 
HIST_DB data [9]. 

The configuration, called a preset, required 
for the next stage of the computations, include: 
• a_preset – required accuracy level of the 

database; 
• r_preset – required risk level of the 

database. 
Risk-accuracy metric is calculated based on 

the configuration setup and information score 
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metric received in the previous step [9].  
In the last stage, the noise is calibrated for the 
noise distribution function 𝐷(𝑑𝑞), according to 
the calculated risk-accuracy metric [9]. 

This modification of the base model 
changes the overall security and accuracy of the 
method as the noise added to the computed 
queries is calibrated and set for each individual 
retrieved query. 
 
2. Adaptive model security features  
 

In case of the differential privacy 
mechanisms there are several factors that must 
be considered and conditions that must be 
satisfied to be fully compliant with the model, 
which are: group privacy, composition, and 
closure under post-processing. Additionally, the 
adaptive model satisfies independent secrecy, 
which is not defined in the original differential 
privacy definition, but was defined through the 
adaptive model characteristics. 

 
Group Privacy 
Group Privacy is a feature that allows to 

control the privacy loss incurred by groups [5]. 
This feature renders to extending the base model 
of the ε-differential privacy, which is bounded 
by 𝑒𝑥𝑝(𝑘𝜀), where 𝑘 means a change of 𝑘 items 
between two databases. 

Let 𝑙1  norm of a database 𝑥 is denoted 
‖𝑥‖1. The 𝑙1 distance between two databases 𝑥 
and 𝑦 is ‖𝑥 − 𝑦‖1. ‖𝑥‖1 is a measure of the size 
of a database 𝑥 (i.e. the number of records it 
contains), and ‖𝑥 − 𝑦‖1 is a measure of how 
many records differ between 𝑥 and 𝑦 [5]. 

Any ε – differentially private mechanism 𝑀 
is (𝑘𝜀) − differentially private for groups of  
size 𝑘. That is, for all ‖𝑥 − 𝑦‖1 ≤  𝑘 and  
all 𝑆 ⊆  𝑅𝑎𝑛𝑔𝑒(𝑀): 
 
𝑃𝑟[𝑀(𝑥)  ∈  𝑆]  ≤  𝑒𝑥𝑝(𝑘𝜀) 𝑃𝑟[𝑀(𝑦)  ∈  𝑆] ,  
 
where the probability space is reflecting the 
characteristic of the mechanism 𝑀. 

 
For all datasets 𝐷1 and 𝐷2 differing on  

at most one element, and all 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝑀): 
 

Pr [𝑀(𝐷1) ∈ 𝑆] ≤ exp (𝜀) × Pr[𝑀(𝐷2) ∈ 𝑆].  
 

The adaptive model still satisfies this 
feature, as the distribution function will not be 
affected beyond an acceptable margin. 

 
 

Composition 
A feature strictly connected with the 

quantification of privacy loss is composition. 
The quantification of loss also permits the 
analysis and control of cumulative privacy loss 
over multiple computations. Understanding the 
behavior of differentially private mechanisms 
under composition enables the design and 
analysis of complex differentially private 
algorithms from simpler differentially private 
building blocks [5]. 

As composition and group privacy are often 
mistaken and linked together, it must be stressed 
that composition and group privacy are not the 
same characteristic. The composition bounds 
improve upon the factor 𝑘, but do not yield the 
same gains for group privacy [5]. 

The adaptive differential privacy provides 
stateless computations, i.e., each of the queries is 
calculated without the previous computations 
markup. However, the interim values of the 
information score metrics are dependent on  
the historical database results, therefore 
influencing the cumulative privacy loss for the 
queries. With every query call with the same 
parameters nonetheless, the privacy loss 
decreases as in such conditions added noise is 
altered in the distribution enhancing algorithm. 

 
Closure under post-processing 
Closure under post-processing is a feature 

meaning: a data analyst, without additional 
knowledge about the private database, cannot 
compute a function of the output of  
a differentially private algorithm 𝑀 and make it 
less differentially private. That is, a data analyst 
cannot increase privacy loss, either under the 
formal definition or even in any intuitive sense, 
by analyzing outputs of the algorithm, no matter 
what auxiliary information is available [5]. 

Formally, the composition of a data-
independent mapping 𝑓 with an 𝜀 – differentially 
private algorithm 𝑀 is also 𝜀 – differentially 
private: 

Let 𝑀 ∶  ℕ|𝑋| |𝑋|  →  𝑅 be a randomized 
algorithm that is (ε, δ) – differentially private. 
Let 𝑓 ∶  𝑅 →  𝑅′ be an arbitrary randomized 
mapping. Then 𝑓 ∘  𝑀 ∶  ℕ|𝑋| |𝑋|  →  𝑅′ is 
𝜀 − differentially private [5].  

For a deterministic function 𝑓 ∶  𝑅 →  𝑅′ 
the result follows because any randomized 
mapping can be decomposed into a convex 
combination of deterministic functions, and  
a convex combination of differentially private 
mechanisms is differentially private [5].  
It follows from the differential privacy 
definition, as ε-differential privacy composes in 
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a straightforward way: the composition of two 
𝜀 – differentially private mechanisms is also 
differentially private.  

For any pair of neighboring databases 𝑥,  𝑦 
with ‖𝑥 − 𝑦‖1 ≤ 1, and any event 𝑆 ⊆  𝑅′,  
let 𝑇 =  {𝑟 ∈  𝑅 ∶  𝑓(𝑟)  ∈  𝑆}.  
Then: 

𝑃𝑟�𝑓�𝑀(𝑥)� ∈  𝑆� =  𝑃𝑟[𝑀(𝑥) ∈  𝑇] ≤ 
≤ 𝑝(𝜀)𝑃𝑟[𝑀(𝑦) ∈  𝑇] = 

= 𝑥𝑝(𝜀)𝑃𝑟[𝑓(𝑀(𝑦)) ∈  𝑆] 
 

In case of the adaptive differential privacy 
algorithm, the condition still holds – since the 
results are modulated independently from each 
other, an analyst cannot infer any sensitive 
individual statistic without having access to the 
actual database. However, since the pre-
processing of the metrics involve auxiliary 
databases, it must be assumed that an analyst 
does not have access to the raw dataset and 
auxiliary databases. The threat modelling 
included later in this paper covers auxiliary 
databases leakage and the risk related with the 
potential attacks at different assets is also 
analyzed and estimated in the risk assessment 
process. 

 
Independent secrecy 
Independent secrecy is a feature that is 

characteristic only to the adaptive model and can 
be defined as a feature that indicates robustness 
against post-processing attacks that take into 
consideration more than one source of 
information and calculations over multiple 
computations. In the adaptive model, even 
though the historical data are used to derive 
information score metric, the outputs generated 
per each query are independent from each other 
in terms of added noise. The algorithm is 
stateless, and the noise is generated specifically 
for each query, and collecting the data from a set 
of queries should not reveal any statistical 
characteristic that could be used to leverage  
a successful inference attack. 

 
 

3. VIOLAS evaluation for the 
designed method 

 
VIOLAS Framework [8] describes the necessary 
characteristic of the perfect SDC function; 
therefore, with use of the framework the 
protection mechanisms can be objectively 
assessed.  

Every SDC method that is evaluated under 
the framework must be assessed separately 
under the same environmental conditions when 

being compared. The environmental security 
controls do not affect the score, as the 
framework is measuring the data quality and 
non-functional features rather than measuring 
the technical security of the implementation. 
However, the security of the environment itself 
cannot be omitted during risk assessment of the 
system, therefore implementation-layer security 
should also be reviewed in parallel while 
assessing the SDC method itself.  

 
VIOLAS Framework uses the statistical 

liablity index (SLI) as a measure to indicate the 
effectiveness of the analyse SDC method. The 
higher the value, the better the method.  
The values are bounded by the system’s 
criticality. 

 
To calculate the SLI value four 

characteristics are taken into account: statistical 
confidentiality (sc), statistical integrity (si), 
statistical accuracy (sa) and statistical 
transparency (st). Each of those characteristics 
has a weighted value which is used to derive the 
end result. The weights (wsc, wsi, wsa, wst) are 
being assigned by the owner of the system, e.g. 
in case where the most important factor is 
confidentiality of the statistical data, the weight 
for the statistical confidentiality can be increased 
and the other weight can be decreased. 

 
Results of the experiment 
To evaluate the adaptive differential privacy 

model under VIOLAS framework, a series of 
calculation had been made. The experiment 
evaluated three scenarios: 
• base differential privacy, i.e., the originally 

defined model, with the typical security 
features characteristic for the model; 

• adaptive differential privacy, i.e., 
differential privacy model extended with 
information score and risk-accuracy 
metrics, with the typical security features 
characteristic for the original model, but 
tweaked according to reflect additional 
features of the extended metrics; 

• arbitrary randomized noise generator 
function applied over the query results, 
without differential privacy security 
features. 

The outcome of the experiment shows estimated 
𝑆𝐿𝐼 values for all three scenarios.  

The values describing statistical 
confidentiality, integrity, accuracy, and 
transparency remained constant throughout the 
experiment. For the base and adaptive 
differential privacy models, some additional 
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conditions were considered as a result of the 
threat modelling process, therefore multiple, but 
constant values were used, and the results reflect 
actual SLI boundaries for those models under 
those conditions. The weights describing the 
importance of each of the criteria, were selected 
at random, but satisfying the definition of 
weighs for VIOLAS Framework [8]. 

The criticality of the system was set at  
a medium level, making the 𝑆𝐿𝐼 = 0.25 being 
the upper bound for the end results. 
 

Tab. 1. Static values of the experiment 
 

𝒗𝒔𝒄 5 
𝒗𝒔𝒄_𝒖 10 

𝒗𝒔𝒄𝒎 10 

𝒗𝒔𝒄𝒓 2 

𝒗𝒔𝒊 10 

𝒗𝒔𝒊𝒎 5 

𝒗𝒔𝒊𝒓 10 

𝒗𝒔𝒂 2 

𝒗𝒔𝒂𝒎 5 
𝒗𝒔𝒂𝒎_𝒖 10 

𝒗𝒔𝒂𝒓 2 

𝒗𝒔𝒕 10 

𝒗𝒔𝒕𝒎 10 

𝒗𝒔𝒕𝒓 2 

𝒄𝒓 4 
 

Table 1 contains consolidated input for the 
constant values used to calculate SLIs, Table 2 
shows variable values used for the experiment. 
Figure 1 and 2 contains consolidated SLI results 
for 50 random cases of 𝑤𝑠𝑐, 𝑤𝑠𝑖, 𝑤𝑠𝑎, 𝑤𝑠𝑡:  
• 𝑑𝑝 is a lower bound of the SLI for base 

differential privacy; 
• 𝑑𝑝_𝑢 is an upper bound of the SLI for base 

differential privacy; 
• 𝑑𝑝𝑚 is a lower bound of the SLI for 

adaptive differential privacy; 
• 𝑑𝑝𝑚_𝑢 is an upper bound of the SLI for 

adaptive differential privacy; 
• 𝑟𝑎𝑛𝑑 is an SLI value for an arbitrary 

randomized noise generator function. 
The obtained results confirm that for almost 

all the tested weights, the lowest SLI values 
were scored by an arbitrary randomized noise 
generator function. The only exception was 
found in the 50th calculation, for which  
the lower bound of the adaptive differential 
privacy scored slightly worse than the arbitrary 

randomized noise generator function. In this 
case, the confidentiality, and the accuracy of  
the SDC method was marginalized, and the 
importance was put on the integrity of  
the method. Due to the characteristics of the 
adaptive differential privacy model,  
the statistical integrity of the results may be 
slightly impacted, in the contrast to the arbitrary 
randomized noise generator function, where the 
statistical integrity is rather consistent. However, 
even having that in mind, the final score 
difference is minimal. 

When it comes to the base and adaptive 
differential privacy models, the base model 
scored better in cases where statistical integrity 
ruled over the statistical confidentiality and 
accuracy. In other cases, and in the equal 
distribution of weights, the adaptive model 
received higher SLI scores boundaries. It is 
however worth noting that in some cases,  
the scores space for the base and adaptive 
differential privacy models frequently overlap, 
i.e., 𝑆𝐿𝐼𝑑𝑝_𝑢 is higher than 𝑆𝐿𝐼𝑑𝑝𝑚. This shows 
how sensitive the scoring framework is and it is 
crucial to properly assign the weights for a given 
system to properly validate the effectiveness of  
a given SDC method under the expected 
system’s conditions and requirements. 
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Fig. 1. Results of the experiment for lower bounds 
 
 
 

 
 

Fig. 2. Results of the experiment for upper bounds 
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Tab. 2. Variable values of the experiment sorted by 
the confidentiality weight 

 
No. 𝒘𝒔𝒄 𝒘𝒔𝒊 𝒘𝒔𝒂 𝒘𝒔𝒕 

1. 0,72768719 0,00772411 0,26304288 0,00154582 
2. 0,56697839 0,19682362 0,02020022 0,21599777 
3. 0,50248099 0,06459421 0,24222403 0,19070077 
4. 0,50150999 0,12926696 0,36105916 0,00816389 
5. 0,43019921 0,02926092 0,39828369 0,14225619 
6. 0,41129868 0,19224656 0,13442088 0,26203387 
7. 0,40718232 0,04655445 0,23161622 0,31464702 
8. 0,38560219 0,24500421 0,03956339 0,32983022 
9. 0,38086005 0,44775252 0,15543498 0,01595246 
10. 0,37302844 0,0602368 0,50217933 0,06455543 
11. 0,35412475 0,4707228 0,00499654 0,17015591 
12. 0,35317876 0,23625866 0,1670999 0,24346268 
13. 0,3212708 0,3905271 0,24813341 0,04006869 
14. 0,31005211 0,2801789 0,20973858 0,20003041 
15. 0,30912864 0,29482001 0,39189157 0,00415977 
16. 0,29813374 0,35489023 0,09147491 0,25550113 
17. 0,29312331 0,21942861 0,20927192 0,27817616 
18. 0,29055414 0,1037781 0,2238659 0,38180185 
19. 0,28894045 0,22568901 0,28617471 0,19919583 
20. 0,28422166 0,10401156 0,27612164 0,33564514 
21. 0,27091507 0,0278043 0,29730706 0,40397357 
22. 0,26387117 0,18662955 0,27191715 0,27758213 
23. 0,25080664 0,00567097 0,34837913 0,39514326 
24. 0,25 0,25 0,25 0,25 
25. 0,24133893 0,27373468 0,21381191 0,27111449 
26. 0,2411239 0,293711 0,34529702 0,11986808 
27. 0,23288824 0,16283798 0,31742887 0,28684491 
28. 0,22766576 0,30928038 0,36815888 0,09489497 
29. 0,22525431 0,10854561 0,45399614 0,21220394 
30. 0,21158791 0,21599603 0,26310295 0,30931311 
31. 0,20054099 0,34202138 0,1251635 0,33227413 
32. 0,17655266 0,1389983 0,41010777 0,27434127 
33. 0,1738486 0,23622124 0,11383035 0,4760998 
34. 0,1737302 0,25312295 0,25839638 0,31475047 
35. 0,17368734 0,0010207 0,74061508 0,08467688 
36. 0,16584974 0,32329985 0,29215023 0,21870017 
37. 0,13661006 0,40306139 0,26962761 0,19070094 
38. 0,12926518 0,36105421 0,00816378 0,50151684 
39. 0,12221164 0,26362997 0,44961922 0,16453918 
40. 0,11758546 0,49180568 0,22987663 0,16073223 
41. 0,11195586 0,29721153 0,36128138 0,22955124 

42. 0,09785253 0,45246975 0,03077569 0,41890203 

43. 0,06931337 0,57784849 0,07428275 0,27855539 
44. 0,06092803 0,22847607 0,17987713 0,53071878 
45. 0,04812502 0,23943005 0,32526199 0,38718295 
46. 0,03337734 0,45431424 0,16226879 0,35003963 
47. 0,03009932 0,32184733 0,4373183 0,21073505 
48. 0,00554118 0,18870375 0,00110895 0,80464612 
49. 0,00536092 0,32933173 0,37353906 0,29176829 
50. 0,00081814 0,59363451 0,06787213 0,33767522 

 
Base differential privacy values 
As it was mentioned before, the retrieved 

SLI scores are a result of assigning static  
values for VIOLAS Framework measured 
characteristics, i.e., statistical confidentiality, 
integrity, accuracy, and transparency and 
calibrating its weights to validate the efficiency 
of the tested methods under different system’s 
requirements. 

To properly assign the values for the 
models in question, a threat modelling type of 
exercise has been performed to establish whether 
the condition is met. The results of this activity 
are presented in the Tables 3 and 4. It must be 
noted however, that the nature of the exercise 
was simplified and limited to identifying the 
most important factors affecting the VIOLAS 
Framework scores. 

As a result of this activity, the values for the 
base differential privacy model characteristics 
were assigned as follows: 
• 𝑣𝑠𝑐 = 5 as a lower limit for the statistical 

confidentiality; 
• 𝑣𝑠𝑐_𝑢 = 10 as an upper limit for the 

statistical confidentiality; 
• 𝑣𝑠𝑖 = 10 as a value for the statistical 

integrity; 
• 𝑣𝑠𝑎 = 2 as a value for the statistical 

accuracy; 
• 𝑣𝑠𝑡 = 10 as a value for the statistical 

transparency.  
The statistical confidentiality in this case is 

ruled by the primary and the secondary data 
identification. As stated in the closure post-
processing feature definition, the differential 
privacy mechanism should make it impossible to 
deduct any sensitive statistics based on the 
outcome of the asked query. What is only 
partially addressed by this feature are the 
inference attacks which use more than one 
source of information, e.g., database. In such 
scenario, two databases can be mutually 
exclusive, yet the metadata from both of them 
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can serve as a potential threat in the secondary 
reidentification of the data. 

However, since there’s no negative 
theoretical bound, i.e., the differential privacy 
does not prevent from creating a mechanism 
under its conditions that would address this 
potential threat as well as even without specific 
considerations of this scenario in the design, 
there’s no guarantee that the attack would 
succeed, two values for the statistical 
confidentiality were assigned to better reflect the 
actual SLI score. 

Additional threat to the confidentiality is 
unauthorized access to the distribution function 
(𝐷(𝑑𝑞)) – in case 𝐷(𝑑𝑞) is leaked, then the 
confidentiality of all the retrieved statistics is 
affected. This threat should more likely be 
considered as a technical implementation-related 
one, therefore, when analyzing only the 
theoretical model, it could be potentially 
skipped. However, since there’s a difference in 
the effects of such leakage for the base and 
adaptive differential privacy models, it was put 
in this analysis. 

 

Tab. 3. Threat modelling results  
for base differential privacy 

 

ID VIOLAS 
Characteristic 

Abuse scenarios  
and comments 

𝒗𝒔𝒄 
𝒗𝒔𝒄_𝒖 

Statistical 
confidentiality  

The characteristic is 
partially satisfied by the 
closure under post- 
-processing feature. 
However, in the following 
cases, the statistical 
confidentiality, as defined 
in the VIOLAS Frame-
work can be affected: 
• an attacker gains 

access to the noise 
distribution function 
𝐷�𝑑𝑞�; 

• an attacker uses more 
than one source of 
information to infer 
sensitive haracteristic. 

𝒗𝒔𝒊 Statistical 
integrity 

The characteristic is fully 
satisfied as the integrity of 
the returned results is not 
calibrated in the base 
differential privacy model, 
i.e., for the same queries, 
the same results will be 
returned. 

𝒗𝒔𝒂 Statistical 
accuracy 

The characteristic is 
partially satisfied as the 
accuracy of the returned 
results is not calibrated in 
the base differential 

privacy model, i.e., the 
retrieved results will fully 
depend on the noise 
distribution function 
𝐷(𝑑𝑞). In the following 
cases, the statistical 
accuracy, as defined in the 
VIOLAS Framework can 
be affected: 
• the noise distribution 

function 𝐷(𝑑𝑞) 
introduces too much 
noise over all the 
asked queries;  

• the noise distribution 
function 𝐷�𝑑𝑞�  is 
never recalibrated 
overtime. 

𝒗𝒔𝒕 Statistical 
transparency 

The characteristic is fully 
satisfied by differential 
privacy definition and the 
group privacy feature. In 
case the SDC did not 
satisfy this characteristic, 
the mechanism could not 
be defined as differential 
privacy mechanism. 

 
The statistical integrity for the base 

differential privacy model will be fully satisfied 
as the model itself does not specify any 
conditions or features that would affect the 
integrity of the same query asked multiple times 
by the same or other entities. Therefore, the 
value for this characteristic was assigned as its 
maximum. 

When it comes to the accuracy of the 
retrieved results, the base differential privacy 
model does not always perform well. As it was 
proven in multiple research [3], [4] for some 
applications the base approach of the differential 
privacy is not acceptable in terms of efficiency 
and statistical accuracy. The two main issues 
that could be causing this are static character of 
the noise distribution function and too excessive 
noise for a given business use case of the 
statistical database. However, for some cases  
the achieved accuracy can be satisfactory, 
therefore the characteristic value was set  
at 2 (𝑣𝑠𝑎 = 2).  

The statistical transparency is an inherent 
feature of the differential privacy, as its 
definition and also group privacy feature 
emphasize that the elimination of the selected 
data sets from a database must not reveal any 
metadata allowing to identify the effect of  
the retrieved statistics before and after the 
elimination from the data sets. Therefore,  
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the value for this characteristic was set  
at maximum. 

 
Adaptive differential privacy values 
The values for the adaptive differential 

privacy model characteristics were assigned  
as follows: 
• 𝑣𝑠𝑐𝑚 = 10 as a value for the statistical 

confidentiality; 
• 𝑣𝑠𝑖𝑚 = 5 as a value for the statistical 

integrity; 
• 𝑣𝑠𝑎𝑚 = 5 as a lower limit for the statistical 

accuracy; 
• 𝑣𝑠𝑎𝑚_𝑢 = 10 as an upper limit for the 

statistical accuracy; 
• 𝑣𝑠𝑡 = 10 as a value for the statistical 

transparency.  
The statistical confidentiality in the 

adaptive differential privacy model tackles  
the grey area of the base model. To reiterate,  
the base model does not fully address a potential 
threat in the secondary reidentification of  
the data in case of using multiple mutually 
exclusive data sources, which in conjunction can 
be used to conduct an inference condition. Since 
the adaptive model, leverages on the associations 
table (𝐴𝑅_𝐷𝐵), which can be build using 
multiple data sources and models as long as the 
historical table (𝐻𝐼𝑆𝑇_𝐷𝐵), which covers  
the historical searched in the scope of the same 
database, the threat resulting primary and 
secondary data reidentification is addressed. 

When it comes to the technical 
implementation-level threats that can affect the 
statistical confidentiality, in the base differential 
privacy model, 𝐷�𝑑𝑞�  leakage was considered. 
In the adaptive model, leaking the distribution 
function only, will not give full advantage and 
lead to a full statistical disclosure. In the 
adaptive model, the distribution function is 
recalibrated dynamically per each request, 
therefore, leaking only an algorithm of the noise 
distribution, will not fully breach the 
confidentiality. However, in case more 
characteristics are leaked at once, i.e., 𝐷(𝑑𝑞), 
the 𝐴𝑅_𝐷𝐵 and 𝐻𝐼𝑆𝑇_𝐷𝐵 databases, 𝑎_𝑝𝑟𝑒𝑠𝑒𝑡 
and 𝑟_𝑝𝑟𝑒𝑠𝑒𝑡, 𝑆 values, then the issue will 
remain open.  

Additional technical threat to the 
confidentiality in case of the adaptive model is 
insufficient quality of the 𝐴𝑅_𝐷𝐵 and 𝐻𝐼𝑆𝑇_𝐷𝐵 
databases. As it was stressed before in case the 
association table is not created before running 
the scheme, then the efficiency in terms of 
confidentiality and accuracy of the algorithm 
decreases. 

Tab. 4. Threat modelling results for adaptive 
differential privacy 

 

ID VIOLAS 
Characteristic 

Abuse scenarios  
and comments 

𝒗𝒔𝒄𝒎 Statistical 
confidentiality 

The characteristic is 
partially satisfied by the 
closure under post-
processing feature. 
Additionally, the threats 
resulting from the base 
differential privacy model 
are addressed, by: 
• Calibrating the noise 

distribution function 
𝐷(𝑑𝑞)); 

• 𝐴𝑅_𝐷𝐵 and 𝐻𝐼𝑆𝑇_𝐷𝐵 
usage. 

The statistical 
confidentiality, as defined 
in the VIOLAS 
Framework can be 
affected by: 
• Insufficient quality of 

the 𝐴𝑅_𝐷𝐵 and 
𝐻𝐼𝑆𝑇_𝐷𝐵 

• an attacker gaining 
access to all of the 
following: the noise 
distribution function 
𝐷(𝑑𝑞) , the 𝐴𝑅_𝐷𝐵 
and 𝐻𝐼𝑆𝑇_𝐷𝐵 
databases, 𝑎_𝑝𝑟𝑒𝑠𝑒𝑡 
and 𝑟_𝑝𝑟𝑒𝑠𝑒𝑡, 𝑆 
values. 

𝒗𝒔𝒊𝒎 Statistical 
integrity 

The statistical integrity 
can be affected as 
repeated queries by design 
will return slightly 
different results.  

𝒗𝒔𝒂𝒎 
𝒗𝒔𝒂𝒎_𝒖 

Statistical 
accuracy  
(5-10) 

The characteristic can be 
fully satisfied as the 
accuracy of the returned 
results is calibrated. 
However, in the following 
cases, the statistical 
accuracy, as defined in the 
VIOLAS Framework can 
be affected: 
• the noise distribution 

function 𝐷(𝑑𝑞) 
introduces too much 
noise over high-risk 
queries; 

• an attacker overfloods 
the 𝐻𝐼𝑆𝑇_𝐷𝐵 with 
artificially generated 
queries, affecting  
the quality of the 
𝐻𝐼𝑆𝑇_𝐷𝐵; 

• 𝑎_𝑝𝑟𝑒𝑠𝑒𝑡 is wrongly 
set up. 
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𝒗𝒔𝒕𝒎 Statistical 
transparency 
(10) 

The characteristic is fully 
satisfied by differential 
privacy definition and the 
group privacy feature. In 
case the SDC did not 
satisfy this characteristic, 
the mechanism could not 
be defined as differential 
privacy mechanism. 
Additionally, the 
transparency guarantee is 
increased by the adaptive 
noise distribution 
function. 

 
The statistical integrity for the adaptive 

model will not be fully satisfied as the noise 
distribution function is dynamically calibrated 
per each database query, therefore, in case the 
same query is made to the database multiple 
times, every time, the retrieved result will be 
slightly different. Therefore, the value for this 
characteristic was lowered in contrast to the base 
model. 

The accuracy of the retrieved results 
however is significantly increased compared 
with the base model. This is again thanks to the 
adaptive distribution function, which alternates 
between lowering and increasing the noise for 
the queries of the different risk profiles. It is 
technically possible to obtain perfect accuracy 
for the no-risk queries, what in some cases could 
be understood as an exception to the differential 
privacy model, since the model itself is a noise 
addition model. However, the mechanism as  
a whole solution remains in the boundaries of 
the differential privacy. It must be noted, 
however, that for the high-risk queries,  
the accuracy can still be affected, therefore,  
the values proposed for this characteristic were 
assigned as a lower and upper bound.  

As for the technical-layer threats that can 
affect the accuracy is wrongly set 𝑎_𝑝𝑟𝑒𝑠𝑒𝑡, 
which would affect all the retrieved results.  
The second threat worth mentioning is feeding 
the 𝐻𝐼𝑆𝑇_𝐷𝐵 with excessive number of 
artificially generated queries which would affect 
the retrieved metrics scores and influence the 
generated noise. The second scenario would only 
affect a local subset, i.e., only the queries which 
data was added to the 𝐻𝐼𝑆𝑇_𝐷𝐵 would be 
affected. Both of those issues can be only 
addressed at a procedural and technical layer. 

As in the base model, the statistical 
transparency is an inherent feature of the 
differential privacy, therefore, the value for  
this characteristic was set at maximum. 
Additionally, the transparency guarantee is the 

adaptive model is increased by the adaptive 
noise distribution function. 

 
Arbitrary randomized noise 
generator values 
The values for an arbitrary randomized 

noise generator function were assigned as 
follows: 
• 𝑣𝑠𝑐𝑟 = 2 as a value for the statistical 

confidentiality; 
• 𝑣𝑠𝑖𝑟 = 10 as a value for the statistical 

integrity; 
• 𝑣𝑠𝑎𝑟 = 2 as a value for the statistical 

accuracy; 
• 𝑣𝑠𝑡𝑟 = 2 as a value for the statistical 

transparency.  
 
An arbitrary randomized noise generator 

function must be understood as function which 
has a noise distribution function 𝐷�𝑑𝑞�  however 
does not guarantee the differential privacy 
features. A randomized function stripped of the 
differential privacy premises can only fully 
satisfy the statistical integrity, if it is designed in 
such a way that the randomization function’s 
input is the asked query, and no additional 
factors are treated as a seed for this function.  

The confidentiality, accuracy, and the 
transparency, in some cases can be achieved, 
however, the observation of those characteristics 
would be based rather on anecdotal evidence 
rather than a systematic and repetitive 
occurrence. Depending on the database access, 
selected static and dynamic attacks [1] could be 
executed to infer sensitive statistics or the noise 
distribution function. Therefore, the values for 
𝑣𝑠𝑐𝑟, 𝑣𝑠𝑖𝑟, 𝑣𝑠𝑎𝑟, 𝑣𝑠𝑡𝑟  were set at 2. 

 
4.  Evaluating against inference 

attacks  
 
Table 5 contains a summary of the best-case 
coverage that base differential privacy (in the 
Table 5 marked as DP), and adaptive differential 
privacy (marked as DPM) for the inference 
attacks. The inference attacks covered in the 
analysis were:  
• S1: small and large query sets attacks [1]; 
• S2: linear equations attacks (including 

tracker) [1]; 
• S3: selection attacks [1]; 
• D1: complementation attacks [1]; 
• D2: insertion attacks [1]. 

Additionally, selected real case attacks were 
covered in the analysis: 
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• GIC: medical data reidentification [11], 
[12]; 

• NF: Netflix data reidentification [10]. 
The cells marked with the delta symbol (∆) 

indicate that the SDC method (DP, DPM) 
remains effective under a specific attack (S1, S2, 
S3, D1, D2, GIC, NF). The cells marked with  
the inverted delta symbol (∇) indicate that the 
SDC method remains partially effective under 
the attack conditions. 

As the results show, properly designed 
differential privacy mechanism could be 
effectively used to address the risks resulting 
from the base inference attacks models. 
However, as it was proven in the previous 
section of this chapter, there are several gaps in 
the base model assumptions and features,  
which could be leveraged on to conduct  
a successful attack. One of those characteristics 
is the secondary data reidentification through  
the multiple-source inference where the sources 
are mutually exclusive. This risk is addressed 
with the adaptive differential privacy model, 
what effectively improves the resistance of the 
method against the inference attacks. 

 
Tab. 5. Effectiveness against selected attacks 

 

 S1 S2 S3 D1 D2 GIC NF 

DP ∆ ∆ ∆ ∆ ∆ ∇ ∇ 

DPM ∆ ∆ ∆ ∆ ∆ ∆ ∆ 

 
Table 6 contains which of the differential 

privacy features can be attributed as  
a characteristic addressing the attack. The group 
privacy (denoted in the table as GP) addresses 
the attacks related to observing the changes of 
the results based on the database size (e.g., S1, 
D1, D2). The composition (denoted in the table 
as COM) deals with the attacks which involve  
a series of queries that can be put into a system 
of equations which result in sensitive data 
reidentification (e.g. S2, S3, GIC, NF).  

The Group Insurance Commission (denoted 
in the tables as GIC [11], [12]) and the Netflix 
(denoted in the tables as NF [10]) attacks would 
be only partially addressed by the composition 
feature, as the attacks were multilayered. Both of 
them included tracker attacks phase (S2), 
however, the key difference between the generic 
tracker attacks class and the GIC and Netflix 
attacks was additional multi-source post-

processing phase. This phase cannot be fully 
addressed by the composition feature of the 
differential privacy model. 

However, the adaptive differential privacy 
model introduces independent secrecy feature 
(denoted in the table as IS), which satisfies the 
robustness against post-processing attacks. 
Thanks to that, the GIC and Netflix attacks 
multi-source post-processing phase of the attack 
could be mitigated.  

The closure under post processing feature 
(denoted as the PP in the table) provides  
a guarantee that the sensitive statistic cannot be 
inferred based on the outputs of the database, 
therefore it will cover most of the single-source 
attacks. Yet again, the feature does not fully 
address multi-source type of attacks, therefore 
GIC and NF attacks can be only partially 
mitigated, as they leveraged on multiple 
databased to create patterns that allowed to infer 
sensitive data. 
 

Tab. 6. Base and adaptive differential privacy 
features effectiveness against selected attacks 

 

 S1 S2 S3 D1 D2 GIC NF 

GP ∆   ∆ ∆   

COM  ∆ ∆   ∇ ∇ 

IS ∆ ∆ ∆ ∆ ∆ ∆ ∆ 

PP ∆ ∆ ∆ ∆ ∆ ∇ ∇ 

 
5. Summary 
 
Adaptive differential privacy changes the 
approach of understanding security and accuracy 
tradeoff for the dynamic statistical disclosure 
control methods as the generated noise is 
calibrated and custom set for each query. 

Mitigation of inference attacks is the key 
feature of the proposed method, but thanks to its 
adaptive character it provides more accuracy 
than the base differential privacy model. 
However, in cases when the desirable feature of 
the statistical disclosure control method is 
statistical integrity, as defined in VIOLAS 
framework, the base differential privacy may be 
a better option.  

It must be noted that SDC methods 
typically focus on the data layer of the system, 
as the statistical inference attacks are classified 
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as business logic abuse rather than environment 
or implementation related attacks. The attacks 
leverage on the vulnerable data model design as 
in the inference attack scenarios it is assumed 
that the access to the dataset is granted by 
default to a certain group of system users, and 
the users abuse the legitimate data-level access.  

However, since the security of the working 
environment also plays a major part in the 
overall security of the system, other factors, 
procedural and technical, must also be 
considered while assessing the risk of the 
system, but they were not covered in the scope 
of this paper. 
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Ewaluacja adaptacyjnego modelu prywatności różnicowej 
 

O. DZIĘGIELEWSKA 
 
Prywatność różnicowa to metoda ochrony statystycznych baz danych, która w ostatnich latach zyskuje 
popularność ze względu na łatwość jej zastosowania dla mechanizmów gromadzenia danych. Istnieje wiele 
wariantów prywatności różnicowej dla konkretnych przypadków i środowisk użycia. Jednym z wariantów jest 
adaptacyjna prywatność różnicowa, która moduluje generowany szum w zależności od profilu ryzyka zadanego 
zapytania oraz wybranego poziomu kompromisu między ryzykiem a dokładnością wyniku dla przeszukiwanej 
bazy danych. Artykuł ma na celu ocenę adaptacyjnej prywatności różnicowej, wykorzystując VIOLAS 
Framework i analizę tego, w jaki sposób charakterystyki bezpieczeństwa zapewniane przez adaptacyjną 
prywatność różnicową zmniejszają ryzyko wybranych ataków wnioskowaniem. 
 
Słowa kluczowe: prywatność różnicowa, framework VIOLAS, metryka wyniku informacyjnego, metryka 
dokładności, ataki wnioskowaniem, bezpieczeństwo statystycznych baz danych. 
 


