PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Studies on the Spatial Structure and Distribution of Flow Velocities in Bolt Fishways

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of more important elements affecting the efficiency of fish passes is a 3D spatial structure of the flow and the flow velocity. The paper presents an analysis pertaining to the deformations of these elements caused by the modification of the fishway’s partition geometry. It has a crucial meaning for the ability of fish to migrate through the fish pass. The research has a key practical significance as it proves the way the apparent modification of the partition geometry affects the hydraulic conditions within the entire the channel of the fishway. It may have very serious consequences for the design assumptions. The presented results of the experimental research were obtained as a consequence of the site and laboratory tests carried outusing a physical model. The measurements were performedfor 3 components of flow’s instantaneous speed within the indicated measurement sections. The results were developed using Matlab software. It was established that the number of whirls produced in the fishway’s pool depends on the quantity of spillway slots and – what seems to have the greatest impact on the flow structure – on the location of slots. The size of whirls is determined by the geometry of spillway slots. The presence of additional spillway slots in the pool, except for the huge main migration slot, contributes to the generation of more whirl structures within the recirculation zone. The more whirls produced in each of the whirl zones, the smaller their diameter. Thisshould create more favourable conditions for the fish migration.
Rocznik
Strony
82--99
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
  • Environmental and Geodetic Sciences, Faculty of Civil Engineering, Koszalin University of Technology, ul. Śniadeckich 2, 75-453 Koszalin, Poland
autor
  • Environmental and Geodetic Sciences, Faculty of Civil Engineering, Koszalin University of Technology, ul. Śniadeckich 2, 75-453 Koszalin, Poland
Bibliografia
  • 1. Aarestrup, K., Lucas, M.C., Hansen, J.A. 2003. Efficiency of a nature-like bypass channel for sea trout (Salmo trutta) ascending a small Danish stream studied by PIT telemetry. Ecology of Freshwater Fish, 12, 160–168, https://doi.org/10.1034/j.1600–0633.2003.00028.x
  • 2. Ahlborn, B., Harper, D.G., Blake, R.W., Ahlborn, D., Cam, M. 1991. Fish without footprints. Journal of Theoretical Biology, 148, 521–533, https://doi.org/10.1016/S0022–5193(05)80234–6
  • 3. Alexandre, C.M., Quintella, B.R., Silva, A.T., Mateus, C.S., Romão, F., Branco, P., Ferreira, M.T., Almeida, P.R. 2013. Use of electromyogram telemetry to assess the behavior of the Iberian barbell (Luciobarbus bocagei Steindachner, 1864) in a pooltype fishway. Ecological Engineering, 51, 191–202, https://doi.org/10.1016/j.ecoleng.2012.12.047
  • 4. Bioly, P., Magnan, P. 2002. Relationship between individual variation in morphological characters and swimming costs in brook char (Salvelinus fontinalis) and yellow perch (Perca flavescens). Journal of Experimental Biology, 205, 1031–1036, https://www.ncbi.nlm.nih.gov/pubmed/11916998
  • 5. Bunt, C.M., Cooke, S.J., McKinley, R.S. 2000. Assessment of the Dunnville fishway for passage of walleyes from Lake Erie to the Grand River. Ontario Journal of Great Lakes Research, 26, 482–488, https://doi.org/10.1016/S0380–1330(00)70709-X
  • 6. Calluaud, D., Pineau. G., Texier, A., David, L. 2014. Estimation of the turbulent features of flow in vertical slot fishway: improvements on fishway design criteria. In: 3rd IAHR Europe Congress, Book of Proceedings, Porto, Portugal. https://www.researchgate.net/publication/281374883_Estimation_of_the_turbulent_features_of_the_flow_in_vertical_slot_fishway_improvements_on_fishway_design_criteria
  • 7. Clay, C.H. 2017. Design of Fishways and Other Fish Facilities. CRC Press, https://doi.org/10.1201%2F9781315141046
  • 8. Costa, M.J., Fuentes-Perez, J.F., Boavida, I., Tuhtan, J.A., Pinheiro, A.N. 2019. Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures. PLOS ONE, 14(1), https://doi.org/10.1371/journal.pone.0211115
  • 9. Cowx, I.G., Welcomme, R.L. 1998. Rehabilitation of rivers for fish. Fishing News Books, Oxford, U.K., Fishing News Books http://www.ecrr.org/Portals/27/Rehabilitation_of_Rivers_for_Fish.pdf
  • 10. Cornu, V., Baran, P., Damien, C., David, L. 2012. Effects of various configurations of vertical slot fishways on fish behaviour in an experimental flume. In 9th International Symposium on Ecohydraulics – ISE 2012, Vienna. http://oatao.univ-toulouse.fr/11268/
  • 11. Chorda, J., Maubourguet, M.M., Roux, H., Larinier, M., Tarrade, L., David, L. 2010, Two-dimensional free surface flow numerical model for vertical slot fishways. Journal of Hydraulic Research, 48(2), 141–151, https://doi.org/10.1080/00221681003703956
  • 12. Goring, D.G., Nikora, V.I. 2002. Despiking Acoustic Doppler Velocimeter Data. Journal of hydraulic engineering, 128, 1, https://doi.org/10.1061/(ASCE)0733–9429(2002)128:1(117)
  • 13. Gowans, A.D., Armstrong, J.D., Priede, I.G., McKelvey, S. 2003. Movements of Atlantic salmon migrating upstream through a fish-pass complex in Scotland. Ecology of Freshwater Fish, 12(3), 177–189 https://doi.org/10.1034/j.1600–0633.2003.00018.x
  • 14. Hawryło, A., Książek, L., Michalik A. 2011. Ocena warunków hydrodynamicznych sprzyjających bytowaniu ryb na odcinku rzeki Skawy. Acta Sci. Pol., Formatio Circumiectus, 10 (4), 5–16, http://www.formatiocircumiectus.actapol.net/pub/10_4_5.pdf
  • 15. Jungwirth, M., Schmutz, S., Weiss, S. 1998. Fish migration and fish bypasses. Oxford [England]: Fishing News Books; Malden, MA: Distributor, USA, Blackwell Science.
  • 16. Katopodis, C. 1992. Introduction to fishway design. Freshwater Institute Central and Arctic Region Department of Fisheries and Oceans, http://eem.wra.gov.tw/public/Attachment/41110254871.pdf
  • 17. Knaepkens, G., Knapen, D., Bervoets, L., Hänfling, B., Verheyen, E., Eens, M. 2002. Genetic diversity and condition factor: a significant relationship in Flemish but not in German populations of the European bullhead (Cottus gobio L.). Heredity, 89, 280–287, https://doi.org/10.1038/sj.hdy.6800133
  • 18. Knaepkens, G., Baekelandt, K., Eens, M. 2006. Fish pass effectiveness for bullhead (Cottus gobio), perch (Perca fluviatilis) and roach (Rutilus rutilus) in a regulated lowland river. Ecology of Freshwater Fish, 15, 20–29, https://doi.org/10.1111/j.1600–0633.2005.00117.x
  • 19. Knapen, D., Knaepkens, G., Bervoets, L., Taylor, M.I., Eens, M., Verheyen, E. 2003. Conservation units based on mitochondrial and nuclear DNA variation among European bullhead populations (Cottus gobio) from Flanders (Belgium). Conservation Genetics, 4(2), 129–140, https://doi.org/10.1023/A:1023351025631
  • 20. Kucukali, S., Verep, B., Alp, A., Turan, D., Mutlu, T., Kaya, C., Yıldırım, Y., Töreyin, B. U., Özelçi, D. 2019. Flow structure and fish passage performance of a brush-type fish way: a field study in the İyidere River, Turkey. Marine and Freshwater Research, -.https://doi.org/10.1071/MF18242;
  • 21. Liao, J.C., Cotel, A. 2013. Effects of Turbulence on Fish Swimming in Aquaculture. In: Palstra A, Planas J (eds) Swimming Physiology of Fish, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978–3-642–31049–2_5
  • 22. Lucas, M., Baras, E. 2001. Migration of Freshwater Fishes, https://doi.org/10.1002/9780470999653
  • 23. Lupandin, A.I. 2005. Effect of flow turbulence on swimming speed of fish. Biology Bulletin, 32, 461–466, https://doi.org/10.1007/s10525–005–0125-z
  • 24. Marriner, B.A., Baki, A.B.M., Zhu, D.Z., Cooke, S.J., Katopodis, C. 2016. The hydraulics of a vertical slot fishway: A case study on the multi-species Vianney-Legendre fishway in Quebec, Canada. Ecological Engineering, 90, 190–202, https://doi.org/10.1016/j.ecoleng.2016.01.032
  • 25. Pavlov, D.S., Lupandin, A.I., Skorobogatov, M.A. 2000. The Effects of Flow Turbulence on the Behavior and Distribution of Fish. Journal of Ichthyology, 20, 232–261, https://scholarworks.umass.edu/fishpassage_journal_articles/749/
  • 26. Pena, L., Puertas, J., Bermúdez, M., Cea, L., Peña, E. 2018. Conversion of Vertical Slot Fishways to Deep Slot Fishways to Maintain Operation during Low Flows: Implications for Hydrodynamics. Sustainability, 10(7), 1–16, https://doi.org/10.3390/su10072406
  • 27. Puzdrowska, M. 2013. Application of numerical methods in the design and analysis of fish pass efficiency. Technical Transactions Environment Engineering, 110, 99–109, http://yadda.icm.edu.pl/baztech/element/bwmeta1.element. baztech-137d6813–7994–4ccc-a683–18e4093f030
  • 28. Puzdrowska, M., Heese, T. 2019 a. Detailed Research on the Turbulent Kinetic Energy’s Distribution in Fishways in Reference to the Bolt Fishway. Fluids 4, no. 2: 64, https://doi.org/10.3390/fluids4020064
  • 29. Puzdrowska, M., Heese, T. 2019 b. Turbulent Kinetic Energy in Bolt Fishway. AgriEngineering 1, no. 2: 265–282, https://doi.org/10.3390/agriengineering1020020
  • 30. Quaranta, E., Comoglio, C., Katopodis, C., Revelli, R. 2016. Numerical Simulations of flow field in vertical slot fishways. Conference: Atti del XXXV Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Bolgona, 14–16 Settembre 2016, http://hdl.handle.net/11583/2647665
  • 31. Quaresma, A.L., Romão, F., Branco, P., Ferreira M.T., Pinheiro A.N. 2018. Multi slot versus single slot pooltype fishways: A modelling approach to compare hydrodynamics. Ecological Engineering, 122, 197–206, https://doi.org/10.1016/j.ecoleng.2018.08.006
  • 32. Rajaratnam, N., Van der Vinne, G., Katopodis, C. 1986. Hydraulics of vertical slot fishways. American Society of Civil Engineers, ASCE, 112, 909–927, https://doi.org/10.1061/(ASCE)0733–9429(1 986)112:10(909)
  • 33. Rodríguez, Á., Bermúdez, M., Rabuñal, J.R., Puertas, J. 2014. Fish tracking in vertical slot fishways using computer vision techniques. Journal of Hydroinformatics, 17, 275–292, IWA Publishing. https://doi.org/10.2166/hydro.2014.034
  • 34. Sanagiotto, D.G., Rossi, J.B., Bravo, J.M. 2019. Applications of Computational Fluid Dynamics in The Design and Rehabilitation of Nonstandard Vertical Slot Fishways. Water, 11(2), 199, https://doi.org/10.3390/w11020199
  • 35. Shamloo, H., Aknooni, S. 2012. 3D-Numerical Simulation of the Flow in Pool and Weir Fishways. In Proceedings of the XIX International Conference on Water Resources CMWR, 17–22 June 2012, Urbana-Champaign, IL, USA http://cmwr2012.cee.illinois.edu/Papers/Special%20Sessions/High-Dimensional%20Computational%20Modeling%20of%20Rivers%20and%20Streams/Shamloo(Aknooni.Shadi).pdf
  • 36. Silva, A.T., Katopodis, C., Santos, J.M., Ferreira, M.T., Pinheiro, A.N. 2012. Cyprinid swimming behaviour in response to turbulent flow. Ecological Engineering, 44, 314–328, https://doi.org/10.1016/j.ecoleng.2012.04.015
  • 37. Smith, D.L., Goodwin, R.A., Nestler, J.M. 2014. Relating Turbulence and Fish Habitat: A New Approach for Management and Research. Reviews in Fisheries Science and Aquaculture, 22, 123–130, https://doi.org/10.1080/10641262.2013.803516
  • 38. Stuart, I.G., Mallen-Cooper, M. 1999. An assessment of the effectiveness of a verticalslot fishway for non-salmonid fish at a tidal barrier on a large tropical/subtropical river. Regulated Rivers: Research and Management, 15, 575–590, https://doi.org/10.1002/(SICI)1099–1646(199911/12)15:6<57 5::AID-RRR562>3.0.CO;2-Q
  • 39. Tarrade, L., Texier, A., David, L., Larinier, M. 2008. Topologies and measurements of turbulent flow in vertical slot fishways. Hydrobiologia, 609, 177–188, https://doi.org/10.1007/s10750–008–9416-y
  • 40. Tritico, H.M., Cotel, A.J. 2010. The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus). Journal of Experimental Biology, 213, 2284–2293, https://doi.org/10.1242/jeb.041806
  • 41. Umeda, C.Y.L., Lima, G., Janzen, J.G., Salla, M.R. 2017. One and three-dimensional modeling of a vertical-slot fishway. Journal of Urban and Environmental Engineering, 11(1), 99–107, https://doi.org/10.4090/juee.2017.v11n1.099107
  • 42. Wang, R.W., David, L., Larinier, M. 2010. Contribution of experimental fluid mechanics to the design of vertical slot fish passes. Knowledge and Management of Aquatic Ecosystems, 02, EDP Sciences. https://doi.org/10.1051/kmae/2010002
  • 43. Webb, P.W., Cotel, A.J. 2010. Turbulence: Does Vorticity Affect the Structure and Shape of Body and Fin Propulsors? Integrative and Comparative Biology, 50(6), 1155–1166, https://doi.org/10.1093/icb/icq020
  • 44. Wilkes, M. A., Enders, E. C., Silva, A. T., and Maddock, I. 2017. Position choice and swimming costs of juvenile Atlantic salmon Salmo salar in turbulent flow. Journal of Ecohydraulics 2(1), 16–27. doi:10.1080/24705357.2017.1287532
  • 45. Woś, A. 2016. The turbulence value in basic hydromorphological units of mountain river in example of Skawa river section. Infrastructure and ecology of rural areas, III/2, 935–947, http://dx.medra.org/10.14597/infraeco.2016.3.2.068
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1727f9f-fdab-48dd-9eb3-0c6fe3eb6038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.