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1. Introduction

Long memory describes the high order correlation structure of a series. If 
a time series exhibits long memory, there is a persistent temporal dependence 
between observations, even when considerably separated in time. The autocor-
relation function (ACF) of series with long memory tails off hyperbolically. These 
series have low-frequency spectral distributions. In contrast to long memory, 
short memory is characterized by the low order correlation structure of a series. 
The presence of long memory means that the market does not immediately re-
spond to information upcoming in the financial market. The market reacts to it 
gradually over a period of time. This is why past price changes can be used as 
a significant basis for the prediction of future price changes. The main implication 
of long memory is that shocks to the volatility process tend to have long-lasting 
effects. Such persistence is a crucial component of risk management, investment 
portfolios, and derivative pricing.

There has been a large amount of research on long memory in economic 
and financial time series. The presence of long memory in asset returns has im-
portant implications for many of the models used in modern financial econom-
ics. For example, the pricing of derivative securities with martingale methods is 
no longer valid, since most of the stochastic calculus employed in martingale 
analysis is inconsistent with long memory. Long memory is also inconsistent with 
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the usual statistical inference methods that are employed to estimate and con-
duct hypothesis testing in the CAPM model.

The present study – in contrast with most papers on this subject – con-
centrates on a comparison of long memory estimates as calculated by different 
methods.

We have used the most recent data (both daily and hourly) for the indices 
and companies chosen. The period under study begins on 31 December, 2013, 
and ends on 19 December, 2014. This time period is sufficient for high frequency 
data and even daily data.

The outline of this paper is as follows: the most important contributions in-
volved with long memory in returns, return volatility, and trading are reviewed in 
the next section. The third section provides a definition of long memory and out-
lines the most important traditional estimation methods of the long memory pa-
rameter. This section also briefly characterizes the data basis. The empirical results 
are presented in the fourth section. In the last section, the results are summarized.

2. Returns and trading volume

It is widely accepted that stock prices reflect investor expectations about 
the future development of a firm. Upcoming information is the main factor that 
changes investor beliefs and, therefore, is the main reason for changes. There are 
situations when prices do not move in spite of new, important upcoming infor-
mation. This is possible when particular groups of investors interpret the same 
new information differently. Sometimes, they interpret new information identi-
cally but start from different initial expectations. From a mathematical point of 
view, changes in stock prices reflect the sum or average of investor behavior in 
reaction to the news. It is clear that stock price changes can be noticed if there is 
a positive trading volume.

Together with price data, volume data is also reported. As in the case of 
prices, trading volume changes depend on market information. In contrast to 
stock prices, a change of intraday expectations is a source of a rise in trading 
volume. Trading volume reflects the sum of investor decisions in reaction to the 
news. Differences between investors in their interpretation of new information 
are not cancelled out, as in the case where an averaging process determines 
prices. Stock price behavior and trading volume changes are helpful in determin-
ing the dynamic properties of stock markets. The observation of both variables 
allows for a better understanding of the importance of upcoming information on 
the market. It is worth noting that speculation motivates investments, even in the 
absence of new information.
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Clark (1973) formulated the Mixture of Distribution Hypothesis (MDH), 
which states that stock returns and trading volume are jointly dependent on a la-
tent information flow variable. This hypothesis posits trading volume as a proxy 
for the upcoming information stochastic process, which MDH implies as a posi-
tive contemporaneous relationship between volume and return volatility data. 

An alternative hypothesis formulated by Copeland (1976) is known as the 
sequential information flow model (SIAH). According to this conjecture, news is 
disseminated sequentially rather than simultaneously to market participants. Se-
quential information flow is the source of a sequence of transitional price equilib-
riums. They are accompanied by persistent high trading volume. The most impor-
tant implication of Copeland’s hypothesis is the existence of positive contempo-
raneous as well as causal relations between price volatilities and trading volume.

Darrat et al. (2003), using intraday trading data for 30 stocks in the DJIA, also 
found that high trading volume causes high return volatility (which accords with 
the SIAH but not the MDH).

In many financial time series, there is a persistence in autocorrelation. This 
property is called long memory. The notion of long memory was formulated by 
British hydrologist Harold Edwin Hurst (1951). The earliest contributions to the 
subject of long memory in time series are those by Mandelbrot and Van Ness (1968) 
and Mandelbrot (1971). They formalized Hurst’s empirical findings using cumula-
tive river flow data, see Geweke and Porter-Hudak (1983), Hosking (1981). Gran-
ger and Joyeux (1980) introduced fractionally-integrated ARMA models, which 
were discussed by Sowell (1992), Beran (1992), and Baillie (1996), among others.

Finance researchers in both theoretical and empirical studies have focused 
on long memory (persistence) in financial asset returns. The finding of long 
memory in financial data would contradict the Efficient Markets Hypothesis of 
Fama (1970). The EMH is based on the assumption of the martingale behavior of 
market prices that rules out long memory. The first application of the persistence 
concept to finance is that of Greene and Fielitz (1977). They used the rescaled – 
range (R/S) method of Hurst; in this way, they confirmed the existence of long 
memory in daily equity returns. However, this result was rejected by Lo (1991), 
who also used the R/S method. Neither did investigations by Aydogan and Booth 
(1988), Crato (1994), Cheung et al. (1993), and Cheung and Lai (1995), Barkou-
las and Baum (1996), Hiemstra and Jones (1997) detected the presence of long 
memory in finance data. Beveridge and Oickle (1997) investigated long memory 
dependence in Canadian daily stock returns by ARIMA models and found long 
memory mean reversion.

Contributions by Booth et al. (1982), Helms et al. (1984), Cheung and Lai 
(1993), Fang et al. (1994), and Barkoulas et al. (1997) detected long memory in 
some kinds of foreign currency rates.
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In the following years, researchers came back to stock markets and started to 
investigate not only returns but also return volatility (absolute values of returns 
or squared returns) and trading volume, also with respect to long memory and 
bivariate long memory.

Estimation results by Bollerslev and Mikkelsen (1996) provided new evi-
dence that the apparent long-run dependence in US stock market volatility 
is best described by a mean-reverting fractionally integrated process, so that 
a shock to the optimal forecast of future conditional variance dissipates at a low 
hyperbolic rate.

Granger and Zhuanxin (1996) justified the relevance of long memory by us-
ing returns from a daily stock market index. The authors found that a number of 
other processes can be long memory, such as generalized fractionally integrated 
models resulting from aggregation, time-changing coefficient models, and pos-
sibly nonlinear models.

Bollerslev and Jubinski (1999) checked the behavior of stock trading vol-
ume and volatility for individual firms from the Standard & Poor 100 composite 
index. They found evidence for the MDH. The long-run hyperbolic decay rates 
appeared to be common across each volume-volatility pair. Moreover, fractional-
ly-integrated processes best describe long-run temporal dependencies in volume 
and volatility series.

Koop et al. (1997) conducted a Bayesian analysis of ARFIMA models and de-
scribed the testing of ARFIMA against ARIMA alternatives.

Lobato and Velasco (2000) checked the properties of 30 equities in the DJIA 
with respect to long memory. According to this study, trading volume exhibited 
long memory. In addition, volatility and volume shared the same degree of long 
memory for most stocks. However, the authors did not detect a common long 
memory component for both processes.

Like both of the above studies by Koop et al. (1997) and Lobato and Velasco 
(2000), we use individual stock data instead of index data in our contribution.

In the next section, we explain the notion of long memory in detail. 

3. Long memory

The necessary and sufficient condition that a covariance stationary stochastic 
process exhibits long memory with memory parameter d is that its spectral den-
sity function f() satisfies: 

  ~ 2df c    as 0  (1)
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Here, c is a finite positive constant, and symbol “~” means that the ratio of 
the left- and right-hand sides tends to one at the limit. According to the literature 
(Granger and Joyeux (1980), Hosking (1981), Beran (1994)), when the process 
satisfies condition (1) and d > 0 its autocorrelation function dies out at a hyper-
bolic rate; i.e.:

~ 2 1d
k c k 

  as k 

Parameter d determines the nature of the memory of the process. If d > 0, 
the spectral density is unbounded near the origin, and the process exhibits long 
memory. If d = 0, the spectral density is bounded at 0, and the process is called 
short memory. When d < 0, the spectral density is zero at the origin, and the 
process is labelled antipersistent and displays negative memory.

Typical of long memory processes, satisfying (1) is the class of autoregres-
sive fractionally integrated moving average (ARFIMA) processes introduced into 
econometrics by Granger and Joyeux (1980).

Xt is called an ARFIMA(p, d, q) process if:

( )( ) ( ) ( )1 d
t tB B x B     

where ( ) 11 p
pz z z      and ( ) 11 q

qz z z        are lag polynomi-
als of order p and q respectively in the backshift operator B with roots outside the 
unit circle, t  is iid (0, 2), and (1  –  B)d is defined by binomial expansion:

( )( )
( ) ( )

0

1
1

d j

j

j d
B L

d j





 
 

   
In addition to the previously mentioned properties of memory, if d > –0.5, 

the ARFIMA process is invertible and possesses a linear Wold representation, and 
if d < 0.5, it is covariance stationary. Thus, if 0 < d < 0.5 the process is station-
ary and exhibits long memory. Many non-stationary series can be transformed 
by integers integrating into stationary ones with a spectral density satisfying (1).

There are several methods for the estimation of long memory parameter d. 
We will review the main methods briefly in the next subsections. Major methods 
will be reviewed in subsections 3.1–3.4, while other methods will be shortly out-
lined in part 3.5.
3.1. Maximum likelihood estimator 

Maximum likelihood estimation (MLE) in the time domain needs an assump-
tion about the exact form of the estimated ARFIMA model. 
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Then the exact Gaussian likelihood function for given sample   1t t T
x

  is:

     , , , , ln2 11
2 2

TT
L d X l X l            (2)

where l = (1,...,1)T, X = (x1,..., xT)T,  and  are the parameters of autoregression 
and moving average polynomials respectively,  is the mean of the process, and  
is its covariance matrix. Sowell (1992) proved that the exact maximum likelihood 
estimator (EML) obtained by maximizing the likelihood function (2) is consistent 
and asymptotically normal; i.e.:

 ˆ ~ , ( / )2 16EMLd N d T c  

where c = 0 when p = q = 0 and c >0 otherwise.

Other properties of MLE and methods of solving some computational prob-
lems are discussed in Sowell (1992) and Doornik and Ooms (2003). There are 
several modifications of exact maximum likelihood estimation; e.g. modified pro-
file likelihood (see Cox and Reid (1987) and An and Bloomfield (1993)) or con-
ditional maximum likelihood (see Tanaka (1999) and Nielsen (2004)). The main 
drawback of such maximum likelihood estimators is their sensitivity to any model 
misspecification, so they can easily be influenced by any short-run dynamics. 

3.2. GPH estimator

Another class of estimators of long memory parameter d are semiparametric 
estimators based on the approximation (1) of the spectral density function near 
the origin. Among them, the most popular is the log-periodogram regression 
method originally developed by Geweke and Porter-Hudak (1983) and analyzed 
in detail by Robinson (1995a). Semiparametric estimators use only information 
from the periodogram for very low frequencies; thus, they are robust to short-
run dynamics. Based on condition (1), after taking the logarithms and inserting 
sample quantities, the long memory estimator is computed from the approxi-
mate regression relationship:

 ln ( ) ln( )const 2j jI d   

where 
2

j
j

T


   are the Fourier frequencies and ( )
2

1

1
2

T
it

t
t

I x e
T





 
  is the 

periodogram of the given sample x1,...,xT. The Geweke and Porter-Hudak (GPH) 
estimator is then defined as the OLS estimator in the above regression using only 
j = 1, ..., m its first values, where m=m(T) is a bandwidth parameter satisfying 
condition:
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1
0

m
m T

   as T 

Geweke and Porter-Hudak originally suggested choosing m equal T . For 
further considerations about the optimal bandwidth, see Hurvich et al. (1998) 
and Henry and Robinson (1996). The asymptotical normality of the GPH esti-
mator was initially proved by Robinson (1995a) for d (1/2, 1/2). But recent-
ly, Kim and Philips (1999) and Velasco (1999a) showed that it is consistent for 
d (–1/2, 1) and has an asymptotically-normal limit distribution for d (–1/2, 3/4):

ˆ ~ ,
2

24GPHd N d
m

 
  
 

There are several modifications of the GPH estimator. For example, Agiaklo-
glou et al. (1993) suggested replacing the constant in the regression by the poly-
nomial in order to reduce bias (see also Andrews and Guggenberger (2003)). 
Similarly, an estimator that allows a short-run component was proposed by Shi-
motsu and Phillips (2002a).

The univariate GPH estimator described above can be generalized for the 
multivariate case. Consider  , ,, ,  1t t N tx x x   a covariance stationary N-dimen-
sional vector process with mean vector µ and covariance matrixj at lag j and 
a fractional integration vector (d1,...,  dN), i.e. each xi,t is integrated of order di. 

For any a, b=1,..., N and 
2

j
j

T


   define the crossperiodogram of the process xt:

   

*

, ,( ) 1 2 1 2
1 1

1 1

2 2

T T
it it

ab a t b t
t t

I x e x e
T T

 

 

  
   
     

 

where the asterisk means complex conjugation. For a bandwidth parameter m 

define  ln ( )kj kk jY I  , k=1,..., N, j=1,...,  m. Then the multivariate GPH estima-
tor of fractional integration dk is given by: 

ˆ 1

2

1
2

m
j kjj

k m
jj

Y
d 




 






 where ln ln
1

1 m

j j j
j

m 

      (3)

For individual series {xj,t}t=1,..,T this estimator is equivalent to the univariate 
GPH estimator previously described but based on its asymptotic normality (Rob-
inson (1995a)). A Wald-type test for null hypothesis:

:0H Pd  
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for a u × N matrix P and N × 1 vector  can be constructed. Test statistic:

     ˆ ˆˆ 1
4

T Tm Pd P P Pd


  

has the limiting 2
u  distribution, where  ˆ ˆ ˆ, ,1 Nd d d   and ̂  is a consistent esti-

mate of the limiting variance of  ˆ2 m d d  (see Robinson (1995a)). In the 

case of testing for a common long memory parameter of the process,  is a vec-
tor of zeroes and    1 10 0N NP I I     is a (N  –  1)×N matrix, where IN-1 is the 
identity matrix of dimension N  –  1.

When the existence of a common order of integration d is assumed, the re-
stricted least square estimator is given by:

ˆ
ˆ

ˆ

1

1

1 2

1

11
2 1 1

m T
N j jj

mT
N N jj

Y
d







 
 

 




(4)

where  , ,1
T

j j NjY Y Y   and 1N is a N × 1 vector of ones. Like the unrestricted 

estimates, the d̂ is asymptotically normally distributed.

3.3. Whittle estimator

Another class of semiparametric estimators includes the narrow-band Gauss-
ian or local Whittle estimators introduced by Künsch (1987) and developed by 
Robinson (1995b), Lobato (1999). In the univariate case, it is defined as a maxi-
mizer of the likelihood function:

  ( )
( , ) ln 2

2
1

1 m
jd

j d
jj

I
Q g d g

m g





 
    

  
 (5)

The ranges of consistency and asymptotic normality of the local Whittle es-
timator are the same as those for the HPG estimator (see Velasco [1999b] and 
Phillips and Shimotsu (2004)), but the Whittle estimator is more efficient because 
asymptotically:

ˆ ~ , 1
4LWd N d

m
 
 
 

For further modifications of the local Whittle estimator, see for example Shi-
motsu and Phillips (2002b) or Andrews and Sun (2004).

As with the GPH estimator, the local Whittle estimator can be defined in the 
multivariate case. The corresponding (concentrating) likelihood function is
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ˆ( ) ln ln ( )
1 1

2 N m

i j
i j

Q d d R d
m  

    (6)

where:

 ˆ ( ) Re ( )
1

1 m

j j j
j

R d I
m 

    (7)

with  , ,1 Nd d
j j jdiag     and a crossperiodogram matrix ( )I  . The estimator 

 ˆ ˆ ˆ, ,1 Nd d d   is defined as a maximizer of the concentrating likelihood func-
tion (6). It can be computed in two ways: by a numerical maximizing of (6) or 
using the two-step procedure proposed by Lobato (1999). The first step is to 

compute the univariate QMLE for every series (denote that vector by ( )ˆ 1d ) and 
the second is to compute the following expression:

( ) ( )
( ) ( )

ˆ ˆ
( ) ( )ˆ ˆ

1 1

12
2 1

T d d

Q d Q d
d d

dd d


              

As shown by Lobato (1999), the above two-step estimator has the same as-
ymptotic distribution as the QMLE based on equation (6), but it is straightfor-
ward to calculate. Under the reasonable assumption: 

( )ˆ ~ ,2 11
d N d E

m
 

 
 

where  12 NE I R R    and ◦ denotes the Hadamard product of two matrices.
Based on these asymptotic properties, a test for the null hypothesis of a lin-

ear set of restrictions on d is available. Consider P which is q × N matrix, N × 1 
vector  and the null hypothesis:

:0H Pd    

Then the test statistic:

     ( ) ( )ˆ ˆˆ 12 1 2T Tm Pd PE P Pd
 

is asymptotically 2
q  distributed under the null hypothesis. It allows testing for 

a common long memory parameter. In this case,  is a vector of zeroes and 
   1 10 0N NP I I     is a (N – 1) ×  N matrix. On the other hand, it allows a test 

of whether the vector process is I(0) or I(1). In this case, P = IN and  is N × 1 
vector of zeroes or ones, respectively.
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If the existence of a common order of integration is assumed, the estimator 
of *d can be computed by maximizing the likelihood function:

*( ) ln
1

2 m

j
j

Nd
Q d

m 

  (8)

The resulting QMLE *d  is asymptotically normally distributed:

* *
ˆ ~ , 1

4
d N d

Nm
 
 
 

3.4. Long memory versus Hurst exponent

The Hurst exponent is applied as a measure of the long memory of a time 
series. It reflects the autocorrelations of the time series. In addition, it is related 
to the rate at which these fall as the lag between pairs of values increases. The 
first definition of the Hurst exponent was originally formulated in hydrology. The 
aim of the study conducted by Hurst was to determine the optimum dam size 
for the Nile River. The volatile rain and drought conditions for this river were 
observed over a long period of time.

The Hurst exponent is known as the “index of dependence” or “index of long-
range dependence.” It measures the relative tendency of a time series either to 
regress strongly to the mean or to cluster in a direction. A value H in the range 
0.5–1 indicates a time series with long-term positive autocorrelation. This means 
that large values in the time series will probably be followed by other large values. 
A Hurst exponent between 0 and 0.5 describes a time series with long-term switch-
ing between high and low values in neighboring pairs. This means that a large 
value will probably be followed by a low value, and that the value after that will 
tend to be large again. The case where H = 0.5 can indicate a completely uncor-
related series. This value characterizes those series for which the autocorrelations 
at small time lags can be positive or negative. However, the absolute values of the 
autocorrelations vanish exponentially to zero rather quickly. For 0.5 < H < 1 and 0 
< H < 0.5, the autocorrelations fall according to a power law. The Hurst exponent 
and long memory parameter are related according to the following equation:

d = H – 0.5
The Hurst exponent, H, is defined in terms of the asymptotic behavior of the 

rescaled range as a function of the time span of a time series as follows:

 
 

 E  as 
n

HR n
Cn n

S

 
  

  
¥

where R(n) is the range of the first n values and S(n) is their standard deviation, 
E(X) is the expected value, n is the time span of the observation (number of data 
points in a time series), C is a constant.
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3.5. Applied methods

Now, we will list the methods used in our computations.
The Geweke and Porter-Hudak method. There is a well-known method, in-

troduced in the work of Geweke and Porter-Hudak (1983), described in section 3.2.
A modified Geweke and Porter-Hudak method. This is a modification 

of the periodogram method. The algorithm divides the frequency axis into loga-
rithmically-equally spaced boxes and then averages the periodogram values con-
nected with frequencies inside the box.

The Whittle estimator. This also performs the periodogram analysis as de-
scribed in section 3.3.

The remaining computations were conducted based on the Hurst exponent 
by using R software with the additional package “fArma.” We used nine different 
functions to estimate the self-similarity parameter or long range dependence in 
a time series, as described by Taqqu, Teverovsky, Willinger (1995) and by Palma 
(2007). Now, we give a short overview of the methods used:

The R/S Rescaled Range Statistic method. A well-known method origi-
nally developed by H.E. Hurst (1951).

The aggregated variance method. The original time series is divided into 
blocks. Afterwards, the sample variance within each block is calculated. The slope 
β = 2H – 2 from the least square fit of the logarithm of the sample variances versus the 
logarithm of the block sizes provides an estimated value of the Hurst exponent H.

The aggregated variance method is based on the observation that the 
variance of the sample mean of a long memory process of m observations be-
haves like   ~ ,2 1d

mVar y cm   for large m, where c is a positive constant. 
Next, by dividing a sample of size n, {y1,…,yn} into k blocks of size m, we have 

     log[ ] ~ log ,2 1jVar y c d j   for j = 1,2,…,k, where jy  is the average of the 
j-th block. Consequently, we see that the heuristic least squares estimator of d is:

   
 

{ [ ] }
  

[ ]
ˆ 1

2

1

log log1
2 2 log

k

jj
k

j

j a Var y b
d

j a





   
 






(9)

where ( )
1

1
log

k

j

a j
k



   and  [ ]
1

1
log

k

j
j

b Var y
k



  . Thus, for a short-memory pro-

cess, 0d   and the slope of the line described by formula (9) should be –1. 
On the other side, for a long memory process with parameter d, the slope is 

2 1 2 2d H     .
The differenced aggregated variance method. In order to differentiate 

jumps and slowly decaying trends, this method differences the sample variances 
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of successive blocks. The slope β = 2H  –  2 from the least squares fit of the loga-
rithm of the differenced sample variances versus the logarithm of the block sizes 
ensures an estimate of the Hurst exponent H.

The aggregated absolute value method. This computes the Hurst expo-
nent from the absolute values of an integrated time series process. Again, the 
slope β = H – 1 of the regression line of the logarithms of the statistic versus the 
logarithm of block sizes gives an estimate for the Hurst exponent H.

Higuchi’s fractal dimension method. This implements a technique si-
milar to the absolute value method. Instead of blocks it uses a sliding window 
to compute the aggregated series. The function includes the calculating of the 
length of a path and finding its fractal dimension D. The slope D = 2 – H from the 
least squares regression of logarithm of the expected path lengths on the logari-
thm of the window sizes provides an estimate of Hurst exponent H.

Peng’s variance of residuals method. The series is divided into blocks of 
size m. Within each block the cumulated sums are computed up to t and the least 
squares line y x    is fitted to the cumulated sums. Next, the sample variance 
of the residuals is calculated proportional to m2H. Let 2

k  be the estimated residu-

al variance from the regression model within block k,  ( ) ,2 2

1

1 m

k t k k
t

x t
m



     

where k  and k  are the least squares estimators of the intercept and the slope of the 

regression line. Let ( )2F k  be the average of these variances,  2 2

1

1 k

j
j

F k
k



  . 

As described by Peng et al. (1994), for a random walk it behaves like   ~ ,
1
2F k ck  

while for a long-range sequence,   ~ .
1
2

d

F k ck


 Then, by taking logarithms we 

have    log ~ log log .1
2

F k c d k   Thus, by fitting the least squares regression we 

get  log log kF k k    . Next we may obtain an estimate of d as ˆ ,ˆ 1
2

d     

where ̂  is the least squares estimator of parameter . Therefore, if the result is 
plotted in a log-log plot on m, we will get a straight line with a slope 2H.

3.6.  Data description

In our computation, we picked a broad spectrum of most important indices 
and companies from leading stock markets over the world. The data consists of 
the log-returns, squared returns which are the measure of volatility and the natural 
logarithms of trading volume series for 8 indices (Australia – 200 largest Australian 
companies (AUS.IDX), France – 40 largest French companies (FRA.IDX), Germa-
ny-30 major German companies (DEU.IDX), Great Britain – 100 top UK compa-
nies as per capitalization (GBR.IDX), Japan – over 200 of Japanese leading compa-
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nies (JPN.IDX), Netherlands (NLD.IDX), Switzerland – 20 Swiss blue-chips (CHE.
IDX), United States of America – 500 major American companies (USA.IDX)) and 
43 companies (including 5 British, 4 French, 4 German, 5 Swiss, and 25 American). 
The price data is at close. We consider both daily and hourly intervals. The period 
of time begins on 31 December, 2013, and ends on 19 December, 2014. Each hour-
ly time series includes nearly 8,000 observations. We used the most-recent available 
financial data. Naturally, zero values were omitted in all considered time series. 

Price and volume data comes from contracts for difference (CFDs). CFD is an 
agreement between two parties – “buyer” and “seller” – to exchange the difference 
between the current value of an underlying asset and its value at contract time. 
Therefore, CFDs are financial derivatives that allow traders to take advantage of 
price movements on underlying financial instruments and are very often used to 
speculate on such markets. Considering equities, CFD is an equity derivative that 
allows investors to speculate on share price movements without ownership of the 
underlying shares. The main advantages of CFDs, compared to futures contracts 
(agreements between two parties to buy or sell an asset for a price agreed upon to-
day with payment and delivery occurring at the future point – delivery date), is that 
the sizes of contracts are smaller, making them more available for small traders and 
pricing much more transparent. A CFD never expires and is a simple mirror of the 
underlying financial instrument, while a futures contract tends to only converge 
near the expiry date compared to the price of the underlying instrument.

4. Empirical results

The Hurst exponents were calculated using R software with the additional 
package “fArma”. We used nine different functions (referring to the methods out-
lined in [3.5.]) to estimate the self-similarity parameter or long range dependence 
in a time series, as described by Taqqu, Teverovsky, Willinger (1995).

The descriptive statistics of the estimated Hurst exponents are shown in ta-
bles 1–6 for, respectively: hourly log-returns, hourly squared log-returns, hourly 
log-volume, daily log-returns, daily squared log-returns, daily log-volume (the 
calculations were rounded to the fourth decimal place).

The ranges, standard deviations, skewness, and kurtosis of the Hurst expo-
nents for these time series depend on the method applied.

Taking into account the mean and median of the Hurst exponent for the 
methods used, one can see that, for most of the methods applied, there is no 
indication of the existence of long memory. In most cases, we see an anti-persis-
tence (median and mean are below 0.5, see Table 1). In these time series (called 
a mean-reverting series), an increase will most likely be followed by a decrease or 
vice-versa (i.e., values will tend to revert to a mean). 
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This means that future values have a tendency to return to a long-term 
mean. The definition of long-range dependence assumes a stationary time se-
ries. In the case of non-stationarity, the estimators of the Hurst exponent can 
be greater than one (which happened in several computations included in our 
contribution).

Table 2 shows quite similar picture to Table 1. However, the values of mean 
and median are for hourly squared log-returns higher than for hourly log-returns. 
Some time series may reflect long memory.

In contrast to those from Table 1 and Table 2 for returns and squared returns 
means and medians of the Hurst exponent for log-volume (see Table 3) calculated by 
all these methods indicate the existence of long memory. Both skewness and kurtosis 
are considerable in size and depend on the estimation method used.

Generally, the means and medians (see tables 4, 5 and 6) are slightly lower 
than the respective values for hourly log-returns. We observed this in the case of 
short memory for the majority of the time series tested. Moreover, the skewness 
and kurtosis have the same order of magnitude.

The above distributions are similar to the respective distributions for hourly 
squared log-returns, both in terms of mean/median and skewness/kurtosis.

In the case of trading volume, there are the largest differences between dis-
tributions in corresponding time intervals. For hourly data, there were exception-
ally high values of excess kurtosis (17.2019 and 12.329), for daily data no value 
is greater than 1. These values, therefore, could be seen as outliers. The means, 
medians, and skewness for both frequencies of data seem to be consistent.

As follows from tables 1–6, the distributions of empirical results are rather 
regular. There are absolute values of skewness greater than 1 in a few cases only. 
The same statement holds true with respect to absolute values of kurtosis greater 
than 1 (with the exception of the above-mentioned outliers). The hypothesis about 
the normal distribution of estimated values should be checked by normality tests.

In the next step, we investigate this property in a formal way using the six most 
popular normality tests (the Anderson-Darling, Cramer von Mises, Kolmogorov-
Smirnov, Pearson chi-square, Shapiro-Francia, and Shapiro-Wilk tests). The cal-
culations were conducted in R software with the additional package “nortest.”

Table 7 shows the results of normality tests for Hurst exponents estimated 
by each method in hourly log-returns. Similar computations were conducted for 
hourly squared log-returns, hourly log-volume, daily log-returns, daily squared 
log-returns, and daily log-volume (to save the space, they are available to the 
reader upon request).

These normality tests confirmed previous assumptions about the normal dis-
tributions of Hurst exponent estimates. Table 8 summarizes the results of these 
investigations – in each cell is the number of normality tests which rejected the 
hypothesis about normal distribution at significance level α = 0.05.
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As follows from the table shown above, the hypothesis about normality – in 
general – could not be rejected. The biggest deviation from a normal distribution is 
represented by hourly log-volume. The list of estimation methods that generate re-
sults which are far away from a normal distribution includes: the Whittle estimator, 
the Geweke and Porter-Hudak method, and Higuchi’s fractal dimension method. 

Example tabulation schemes of the estimated Hurst exponents for hourly 
log-returns and hourly log-volume are presented in Table 9. Similar schemes of 
the estimated Hurst exponents (to save the space they are available to the reader 
upon request) were done for hourly squared log-returns, daily log-returns, daily 
squared log-returns, and daily log-volume. These calculations gave us an insight 
into the long memory property of the time series under study.

Table 9

Tabulation schemes for hourly log-returns and hourly log-volume *

H  <  0 [0; 0.49]
(0.49; 
0.51)

[0.51; 1] H   >  1

AUS.IDX 0 (0) 5 (0) 1 (0) 3 (8) 0 (1)

CHE.IDX 0 (0) 1 (0) 3 (0) 5 (9) 0 (0)

DEU.IDX 0 (0) 2 (0) 2 (0) 5 (9) 0 (0)

FRA.IDX 0 (0) 5 (1) 1 (0) 3 (4) 0 (4)

GBR.IDX 0 (0) 3 (0) 2 (0) 4 (9) 0 (0)

JPN.IDX 0 (0) 1 (0) 3 (0) 5 (9) 0 (0)

NLD.IDX 0 (0) 5 (0) 2 (0) 2 (8) 0 (1)

USA.IDX 0 (0) 4 (1) 1 (0) 4 (8) 0 (0)

BMW.DEU 0 (0) 6 (0) 0 (0) 3 (6) 0 (3)

COMM.DEU 0 (0) 4 (0) 1 (0) 4 (7) 0 (2)

DEBK.DEU 0 (0) 3 (0) 0 (0) 6 (6) 0 (3)

EON.DEU 0 (0) 4 (0) 2 (0) 3 (6) 0 (3)

BNPP.FRA 0 (0) 7 (0) 0 (0) 2 (6) 0 (3)

LVHM.FRA 0 (0) 3 (0) 2 (0) 4 (6) 0 (3)

SANO.FRA 0 (0) 4 (0) 1 (0) 4 (6) 0 (3)
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H  <  0 [0; 0.49]
(0.49; 
0.51)

[0.51; 1] H  > 1

TOTAFRA 0 (0) 5 (0) 2 (0) 2 (6) 0 (3)

CSG.CHE 0 (0) 6 (0) 1 (0) 2 (6) 0 (3)

NEST.CHE 0 (0) 7 (0) 0 (0) 2 (6) 0 (3)

NOVA.CHE 0 (0) 7 (0) 0 (0) 2 (6) 0 (3)

ROCH.CHE 0 (0) 7 (0) 0 (0) 2 (6) 0 (3)

UBS.CHE 0 (0) 8 (0) 0 (0) 1 (7) 0 (2)

BHPP.GBR 0 (0) 4 (0) 1 (0) 4 (7) 0 (2)

BP.GBR 0 (0) 5 (0) 2 (0) 2 (7) 0 (2)

HSBC.GBR 0 (0) 2 (0) 1 (0) 6 (7) 0 (2)

RIO.GBR 0 (0) 6 (0) 0 (0) 3 (7) 0 (2)

VOD.GBR 0 (0) 7 (0) 0 (0) 2 (9) 0 (0)

AMAZ.USA 0 (0) 4 (0) 1 (0) 4 (7) 0 (2)

ATT.USA 0 (0) 4 (0) 0 (0) 5 (8) 0 (1)

BOA.USA 0 (0) 4 (0) 2 (0) 3 (8) 0 (1)

CHEV.USA 0 (0) 4 (0) 3 (0) 2 (7) 0 (2)

CISC.USA 0 (0) 5 (0) 2 (0) 2 (9) 0 (0)

COPA.USA 0 (0) 5 (0) 1 (0) 3 (7) 0 (2)

DISN.USA 0 (0) 6 (0) 0 (0) 3 (7) 0 (2)

EBAY.USA 0 (0) 6 (0) 0 (0) 3 (6) 0 (3)

EXXO.USA 0 (0) 4 (0) 2 (0) 3 (8) 0 (1)

GEEL.USA 0 (0) 5 (0) 1 (0) 3 (8) 0 (1)

GEMO.USA 0 (0) 4 (0) 1 (0) 4 (7) 0 (2)

HEPA.USA 1 (0) 5 (0) 2 (0) 1 (6) 0 (3)

HOME.USA 0 (0) 4 (0) 2 (0) 3 (5) 0 (4)

IBM.USA 0 (0) 5 (0) 0 (0) 4 (7) 0 (2)

Table 9 cont.
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INTC.USA 0 (0) 3 (0) 0 (0) 6 (9) 0 (0)

JOJO.USA 0 (0) 5 (0) 0 (0) 4 (7) 0 (2)

JPMC.USA 0 (0) 5 (0) 1 (0) 3 (9) 0 (0)

MCDN.USA 0 (0) 4 (0) 1 (0) 4 (2) 0 (7)

MSFT.USA 0 (0) 5 (0) 2 (0) 2 (8) 0 (1)

ORCL.USA 0 (0) 7 (0) 1 (0) 1 (6) 0 (3)

PHMO.USA 0 (0) 3 (0) 1 (0) 5 (6) 0 (3)

PRGA.USA 0 (0) 5 (0) 1 (0) 3 (7) 0 (2)

STAR.USA 0 (0) 3 (0) 1 (0) 5 (7) 0 (2)

WMS.USA 0 (0) 6 (0) 0 (0) 3 (7) 0 (2)

YHOO.USA 0 (0) 6 (0) 0 (0) 3 (6) 0 (3)

* The numbers concerning log-volume are given in parentheses.

A summary of the tabulation schemes is shown in Table 10. In each cell, there 
is the number of time series (from the 51 time series used in this study) with long 
memory as determined by a particular number of methods (which are at the head 
of each column).

Table 10

Long memory property in considered time series

Number of methods 0 1 2 3 4 5 6 7 8 9

Hourly log-returns 0 3 12 16 11 6 3 0 0 0

Hourly squared log-returns 0 0 3 3 9 18 12 1 2 3

Hourly log-volume 0 0 1 0 1 1 16 16 8 8

Daily log-returns 5 7 11 8 13 5 1 1 0 0

Daily squared log-returns 0 1 4 1 14 15 9 3 4 0

Daily log-volume 0 0 0 0 2 9 10 17 10 3

Table 9 cont.
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As can be seen from Table10, long memory seems to be invariant with re-
spect to the frequency of data – hourly and daily series have similar properties. 
Certainly, the strongest long memory is seen in hourly and daily log-volume. 
Hourly and daily squared returns exhibit weaker long memory. Finally, hourly 
and daily log-returns do not exhibit long memory at all. By and large, these obser-
vations are in line with previous results reported in other contributions.

As a last step, we investigated whether the frequency of data affects the pro-
bability distributions of the estimated Hurst exponents. Table 11 presents the 
p-values of a two-sample Kolmogorow-Smirnov test that compares the distribu-
tions of the estimated Hurst exponents for, respectively: hourly log-returns ver-
sus daily log-returns, hourly squared log-returns versus daily squared log-returns, 
and hourly log-volume versus daily log-volume.

Table 11

A comparison of distributions using a two-sample Kolmogorov-Smirnov test (p-values)
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At a significance level α = 0.05, the distributions of the estimated Hurst expo-
nents for hourly and daily log-returns are statistically different for six of the nine 
methods of the estimation of the Hurst exponent. Analogously, for squared log-
returns this property is satisfied by three methods. Finally, for log-volume, this 
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property is satisfied by six methods. We can claim, therefore, that the probability 
distributions of the estimated Hurst exponent depend – to some extent – on the 
time frequency chosen. 

5. Conclusions

The main goal of this study was to detect the long memory in the financial 
time series (returns, volatility, and trading volume) and to identify the impact of 
data frequency on the long memory properties of the financial time series. In ad-
dition, we tried to compare “consistency” of results derived by nine methods for 
the estimation of Hurst exponents (long memory). 

The computations were conducted for 51 time series of log-returns, squared 
log-returns, and log-volume by nine methods with respect to hourly and daily data.

The bases of this comparison were the descriptive statistics of the estimated 
(by nine methods) Hurst exponents, probability distributions, and the impact of 
data frequency on the results.

Irrespective of data frequency and company or market index, long memory 
could not be detected in the log-returns. However, the size of the Hurst expo-
nents of log-returns seems to rise with data frequency. In addition, the prob-
ability distributions of the Hurst exponents for hourly and daily data are mostly 
significantly different. In squared log-returns (a proxy for volatility), most of the 
methods used indicate the existence of long memory. By and large, in the case 
of squared log-returns, the frequency of data with respect to long memory does 
not matter. Also, differences in distributions for hourly and daily data are less 
pronounced than in the case of log-returns.

All of the methods used indicate significant long memory in log-volume data 
irrespective of its frequency. In addition, the distributions of the estimates of Hurst 
exponents depend to a large extent on the frequency of the time series data.
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