PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of quinoline using various particle sizes anthracite: adsorption kinetics and adsorption isotherms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work provided an adsorption method of the removal of quinoline by using anthracite of various particle sizes. The characteristics of the adsorbents were analyzed by Camsizer XT for particle size analysis, FT-IR for functional groups, X-ray diffusion for mineralogical composition, Brunauer-Emmett-Teller for specific surface area and Barrett-Joyner-Halenda for pore size distribution. The average particle size of AC1-AC4 were 0.0342 mm, 0.1015 mm, 0.2103 mm and 0.3815 mm, respectively. The specific surface of the AC1-AC4 were 3.5 m2·g-1, 1.5 m2·g-1, 0.7 m2·g-1 and 0.1 m2·g-1 respectively. The adsorption capacity present a linear increase with the specific surface area increasing. To reveal the process of the adsorption, the adsorption kinetics and isotherms were performed. The kinetics data were analyzed by pseudo-first-order, pseudo-second-order and intra-particle diffusion equation using linearized correlation coefficient. Pseudo-second-order was found to best represent the kinetics data, which indicated that the adsorption of quinoline onto anthracite belongs to chemisorption. The equilibrium isotherms data were analyzed by Langmuir model and Freundlich model, the results indicated that the Freundlich model fit well for all the adsorption processes, which showed that the adsorption of quinoline onto anthracite belongs to endothermic reaction.
Rocznik
Strony
196--207
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering and Technology, China University of Mining & Technology (Beijing), Beijing 100083, China
autor
  • School of Chemical Engineering and Technology, China University of Mining & Technology (Beijing), Beijing 100083, China
autor
  • School of Chemical Engineering and Technology, China University of Mining & Technology (Beijing), Beijing 100083, China
autor
  • School of Chemical Engineering and Technology, China University of Mining & Technology (Beijing), Beijing 100083, China
autor
  • School of Chemical Engineering and Technology, China University of Mining & Technology (Beijing), Beijing 100083, China
autor
  • School of Chemical Engineering and Technology, China University of Mining & Technology (Beijing), Beijing 100083, China
Bibliografia
  • AKSU, Z. & J. YENER, 2001. A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents. Waste Manage (Oxford), 21, 695-702.
  • ALLEN, S. J., G. MCKAY & K. Y. H. KHADER, 1989. Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat. Environ Pollut, 56, 39-50.
  • ANDERSSON, K. I., M. ERIKSSON & M. NORGREN, 2011a. Removal of lignin from wastewater generated by mechanical pulping using activated charcoal and fly ash: Adsorption isotherms and thermodynamics. Industrial & Engineering Chemistry Research, 50, 7722-7732.
  • ANDERSSON, K. I., M. ERIKSSON & M. NORGREN, 2011b. Removal of lignin from wastewater generated by mechanical pulping using activated charcoal and fly ash: adsorption kinetics. Industrial & Engineering Chemistry Research, 50, 7733-7739.
  • BADMUS, M. & T. AUDU, 2009. Periwinkle shell: Based granular activated carbon for treatment of chemical oxygen demand (COD) in industrial wastewater. The Canadian Journal of Chemical Engineering, 87, 69-77.
  • BARRETT, E. P., L. G. JOYNER & P. P. HALENDA, 1951. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc, 73, 373-380.
  • BAŞAR, C. A., 2006. Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. J Hazard Mater, 135, 232-241.
  • BURMISTRZ, P., A. ROZWADOWSKI, M. BURMISTRZ & A. KARCZ, 2014. Coke dust enhances coke plant wastewater treatment. Chemosphere, 117, 278-284.
  • CAI, C.-F. & C.-G. TANG, 2012. Competitive adsorption of main organic pollutants from coking wastewater on coking coal. Journal of China Coal Society, 37, 1753-1759.
  • CAI, C., X. ZHENG, H. GAO & M. ZUO, 2010. Adsorption kinetics of organic in coking wastewater effluent from secondary sedimentation tank on coal. Journal of China Coal Society, 35, 299-302.
  • CARVAJAL-BERNAL, A. M., F. GóMEZ, L. GIRALDO & J. C. MORENO-PIRAJáN, 2015. Adsorption of phenol and 2, 4-dinitrophenol on activated carbons with surface modifications. Microporous Mesoporous Mater, 209, 150-156.
  • CHANGBIN XIA, X. H., 2000. Adsorption heavy metal ion by using sulfonated lignite. Material Protection, 33, 19-20.
  • CHATZOPOULOS, D., A. VARMA & R. L. IRVINE, 1993. Activated carbon adsorption and desorption of toluene in the aqueous phase. AlChE J, 39, 2027-2041.
  • DABROWSKI, A., M. JARONIEC & J. TóTH, 1983. Application of tóth's equation to describe the single-solute adsorption from dilute solutions on solids. J Colloid Interface Sci, 94, 573-576.
  • FANG, J., X. SONG, C. CAI & C. TANG, 2010. Adsorption characteristica of coking coal in coking wastewater treatment. Jounal of Anhui Univercity of Technology and Science, 25, 43-47.
  • FIERRO, V., V. TORNé-FERNáNDEZ, D. MONTANé & A. CELZARD, 2008. Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous Mesoporous Mater, 111, 276-284.
  • FLETCHER, A. J., Y. UYGUR & K. M. THOMAS, 2007. Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons. The Journal of Physical Chemistry C, 111, 8349-8359.
  • GERENTE, C., V. LEE, P. L. CLOIREC & G. MCKAY, 2007a. Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Critical reviews in environmental science and technology, 37, 41-127.
  • GERENTE, C., V. K. C. LEE, P. L. CLOIREC & G. MCKAY, 2007b. Application of Chitosan for the Removal of Metals From Wastewaters by Adsorption—Mechanisms and Models Review. Critical Reviews in Environmental Science and Technology, 37, 41-127.
  • GUO, Y. & R. BUSTIN, 1998. FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals. International Journal of Coal Geology, 37, 29-53.
  • HO, Y.-S. & G. MCKAY, 1999. Pseudo-second order model for sorption processes. Process Biochem, 34, 451-465.
  • HO, Y., J. PORTER & G. MCKAY, 2002. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water, Air, Soil Pollut, 141, 1-33.
  • KAYA, E. M. Ö., A. S. ÖZCAN, Ö. GöK & A. ÖZCAN, 2013a. Adsorption kinetics and isotherm parameters of naphthalene onto natural- and chemically modified bentonite from aqueous solutions. Adsorption, 19, 879-888.
  • KAYA, E. M. Ö., A. S. ÖZCAN, Ö. GöK & A. ÖZCAN, 2013b. Adsorption kinetics and isotherm parameters of naphthalene onto natural-and chemically modified bentonite from aqueous solutions. Adsorption, 19, 879-888.
  • LEDESMA, E. B., P. F. NELSON & J. C. MACKIE. 1998. The formation of nitrogen species and oxygenated PAH during the combustion of coal volatiles. In Symposium (International) on Combustion, 1687-1693. Elsevier.
  • LI, L., P. A. QUINLIVAN & D. R. KNAPPE, 2002. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon, 40, 2085-2100.
  • MAGNUS, E., G. E. CARLBERG & H. HOEL, 2000. TMP wastewater treatment, including a biological high-efficiency compact reactor: Removal and characterization of organic components. Nord Pulp Pap Res J, 15, 29-36.
  • MALL, I. D., V. C. SRIVASTAVA, N. K. AGARWAL & I. M. MISHRA, 2005. Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 264, 17-28.
  • MOHAN, S. V. & J. KARTHIKEYAN, 1997. Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal. Environ Pollut, 97, 183-187.
  • POLAT, H., M. MOLVA & M. POLAT, 2006. Capacity and mechanism of phenol adsorption on lignite. Int J Miner Process, 79, 264-273.
  • QIANG, Z., D. YUFENG, M. YONGQIU & Z. CHUN, 2013. Kinetics and mechanism of activated carbon adsorption for mercury removal. Proceedings of the CSEE 33, 10-17.
  • SARKAR, M., A. SARKAR & J. GOSWAMI, 2007. Mathematical modeling for the evaluation of zinc removal efficiency on clay sorbent. J Hazard Mater, 149, 666-674.
  • SRIVASTAVA, V. C., I. D. MALL & I. M. MISHRA, 2005. Treatment of pulp and paper mill wastewaters with poly aluminium chloride and bagasse fly ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 260, 17-28.
  • SUTTON, S. D., S. L. PFALLER, J. R. SHANN, D. WARSHAWSKY, B. K. KINKLE & J. R. VESTAL, 1996. Aerobic biodegradation of 4-methylquinoline by a soil bacterium. Applied and environmental microbiology, 62, 2910-2914.
  • UGURLU, M., A. GURSES, M. YALCIN & C. DOGAR, 2005. Removal of phenolic and lignin compounds from bleached kraft mill effluent by fly ash and sepiolite. Adsorption, 11, 87-97.
  • WU, J. & H.-Q. YU, 2006. Biosorption of 2, 4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: Isotherms, kinetics and thermodynamics. J Hazard Mater, 137, 498-508.
  • YI, D. 2012. Study on copper adsorption on Shanxi Pingsuo weathered coal. Chinese Academy of Agricultural Sciences.
  • ZHU, H., LI, HU LIN , OU, ZHESHEN , WANG, DIANZUO, XIAOLI LV, 2001. Study on surface modification of different rank coals by using FTIR. Journal of China University of Mining & Technology, 30, 366-370.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a16935cb-8705-46ea-83f3-0575268fe0fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.