PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Thermochemical utilization of low rank coal and flotation concentrate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flotation concentrates are waste material from coal mine operation. The process of steam gasification seems to be an attractive option for their economic utilization and an alternative to their potential combustion in boilers. The gasification process is characterized by both higher efficiency and lower emission of pollution than conventional combustion systems. In this paper the results of the steam gasification of low rank coal and flotation concentrate into hydrogen-rich gas at the temperature of 800 °C are presented. The reactivity for 50% carbon conversion as well as the maximum reactivity in this process were calculated for the samples studied.
Rocznik
Strony
109--111
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Polska Grupa Górnicza S.A., Powstańców 30, 40-039, Katowice, Poland
  • Central MIning Institute, Plac Gwarków 1, 40-166, Katowice, Poland
Bibliografia
  • 1. Alonso, M. J. G., Borrego, A. G., Alvarez, D., Parra, J. B., & Menendez, R. (2001). Influence of pyrolysis temperature on char optical texture and reactivity. Journal of Analytical and Applied Pyrolysis, 58(59), 887-909. https://doi.org/10.1016/S0165-2370(00)00186-8.
  • 2. Belkin, H., Zheng, B., Zhou, D., & Finkelman, R. (2008). Chronic arsenic poisoning from domestic combustion of coal in rural China. A case study of the relationship between earth materials and human health. Environmental Geochemistry, 401-420. https://doi.org/10.1016/B978-0-444-53159-9.00017-6.
  • 3. Dai, S., Ren, D., Chou, C.-L., Finkelman, R. B., Seredin, V. V., & Zhou, Y. (2012). Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94, 3-21. https://doi.org/10.1016/j.coal.2011.02.003.
  • 4. Dychkovskyi, R., Vladyko, O., Maltsev, D., & Cabana, C. E. (2018). Some aspects of the compatibility of mineral mining technologies. Rudarsko-Geolosko-Naftni Zbornik, 42(4), 73-82. https://doi.org/10.17794/rgn.2018.4.7.
  • 5. Finkelman, R. B. (1994). Modes of occurrences of potential hazardous elements in coal, level of confidence. Fuel Processing Technology, 39(1-3), 21-34. https://doi.org/10.1016/0378-3820(94)90169-4.
  • 6. Howaniec, N., & Smoliński, A. (2014). Effect of fuel blend composition on the efficiency of hydrogen-rich gas production in co-gasification of coal and biomass. Fuel, 128, 442-450. https://doi.org/10.1016/j.fuel.2014.03.036.
  • 7. Howaniec, N., & Smoliński, A. (2017). Biowaste utilization in the process of co-gasification with hard coal and lignite. Energy, 118(1), 18-23. https://doi.org/10.1016/j.energy.2016.12.021.
  • 8. Kamińska-Pietrzak, N., & Smoliński, A. (2013). Selected environmental aspects of gasification and co-gasification of various types of waste. Journal of Sustainable Mining, 12(4), 6-13. https://doi.org/10.7424/jsm130402.
  • 9. Krawczyk, P., Howaniec, N., & Smoliński, A. (2016). Economic efficiency analysis of substitute natural gas (SNG) production in steam gasification of coal with the utilization of HTR excess heat. Energy, 114, 1207-1213. https://doi.org/10.1016/j.energy.2016.08.088.
  • 10. Lin, S., Harada, M., Suzuki, Y., & Hatano, H. (2002). Hydrogen production from coal by separating carbon dioxide during gasification. Fuel, 81(16), 2079-2085. https://doi.org/10.1016/S0016-2361(02)00187-4.
  • 11. Moreno, T., Querol, X., Alastuey, A., Viana, M., Salvador, P., Sánchez De La Campa, A., et al. (2006). Variations in atmospheric PM trace metal content in Spanish towns: Illustrating the chemical complexity of the inorganic urban aerosol cocktail. Atmospheric Environment, 40(35), 6791-6803. https://doi.org/10.1016/j.atmosenv.2006.05.074.
  • 12. Moreno, T., Trechera, P., Querol, X., Lah, R., Johnson, D., Wrana, A., et al. (2019). Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. International Journal of Coal Geology, 203, 52-59. https://doi.org/10.1016/j.coal.2019.01.006.
  • 13. Őzdemir, M., & Żelkowski, J. (1998). New applications of the fixed bed reactor to the measurement of coal reactivity under dynamic combustion conductions. Energy Conversion and Management, 39(16-18), 1891-1898. https://doi.org/10.1016/S0196-8904(98)00082-X.
  • 14. Pivnyak, G., Dychkovskyi, R., Smirnov, A., & Cherednichenko, Y. (2013). Some aspects on the software simulation implementation in thin coal seams mining. In G. Pivnyak, O. Beshta, & M. Alekseyev (Eds.). Energy efficiency improvement of geotechnical systems. Taylor & Francis Group.
  • 15. PKN (1981). PN-G-04513:1981 Paliwa stałe - Oznaczanie ciepła spalania i obliczanie wartości opałowej (Solid fuels - determination of the heat of combustion and calculation of the calorific value).
  • 16. PKN (1998a). PN-G-04516:1998 Paliwa stałe - Oznaczanie zawartości części lotnych metodą wagową (Solid fuels - determination of volatile matter content by gravimetric method).
  • 17. PKN (1998b). PN-G-04560:1998 Paliwa stałe - Oznaczanie zawartości wilgoci, części lotnych oraz popiołu analizatorem automatycznym (Solid fuels - determination of moisture content, volatile parts and ash with an automatic analyzer).
  • 18. PKN (1998c). PN-G-04571:1998 Paliwa stałe - Oznaczanie zawartości węgla, wodoru i azotu automatycznymi analizatorami - Metoda makro (Solid fuels - determination of carbon, hydrogen and nitrogen content by automated analyzers - Macro method).
  • 19. PKN (2001). PN-G-04584:2001 Paliwa stałe - Oznaczanie zawartości siarki całkowitej i popiołowej automatycznymi analizatorami (Solid fuels - determination of total sulfur and ash content by automatic analyzers).
  • 20. Smoliński, A. (2011). Coal char reactivity as a fuel selection criterion for coal-based hydrogen-rich gas production in the process of steam gasification. Energy Conversion and Management, 52(1), 37-45. https://doi.org/10.1016/j.enconman.2010.06.027.
  • 21. Smoliński, A., & Howaniec, N. (2013). Application of gas chromatography in the study of steam gasification and co-gasification of hard coal and biomass chars. Acta Chromatographica, 25(2), 1-14. https://doi.org/10.1556/AChrom.25.2013.2.8.
  • 22. Sobolev, V., & Usherenko, S. (2006). Shock-wave initiation of nuclear transmutation of chemical elements. Journal de Physique IV (Proceedings), 134, 977-982. https://doi.org/10.1051/jp4:2006134149.
  • 23. Takarada, T., Tamai, Y., & Tomita, A. (1985). Reactivities of 34 coals under steam gasification. Fuel, 81(10), 1438-1442. https://doi.org/10.1016/0016-2361(85)90347-3.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a168e6d6-a668-4512-9bf5-279e335404d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.