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A B S T R A C T

Flotation concentrates are waste material from coal mine operation. The process of steam gasification seems to
be an attractive option for their economic utilization and an alternative to their potential combustion in boilers.
The gasification process is characterized by both higher efficiency and lower emission of pollution than con-
ventional combustion systems. In this paper the results of the steam gasification of low rank coal and flotation
concentrate into hydrogen-rich gas at the temperature of 800 °C are presented. The reactivity for 50% carbon
conversion as well as the maximum reactivity in this process were calculated for the samples studied.

1. Introduction

Coal sludge is composed of coal grains with a diameter below 1mm.
It is produced in a coal preparation plant, where the quality of raw coal
is improved to obtain higher energy density (Moreno et al., 2019). This
takes place in a technological enrichment process involving water. The
products from the enrichment process are dewatered. In the coal sludge
enrichment process, flotation concentrate is formed, i.e. a waste fuel
characterized by high calorific value and grain size of up to 1mm
(Belkin, Zheng, Zhou, & Finkelman, 2008; Dai et al., 2012; Finkelman,
1994; Moreno et al., 2006). The thermochemical utilization of low rank
coal and flotation concentrate offers the benefits of reduced loads of
waste combined with the partial replacement of limited resources of
fossil fuels in energy generation (Howaniec & Smoliński, 2014; 2017;
Dychkovskyi, Vladyko, Maltsev, & Cabana, 2018; Sobolev & Usherenko,
2006; Pivnyak, Dychkovskyi, Smirnov, & Cherednichenko, 2013). The
conventional methods of the thermochemical conversion of solid fuels,
in particularly coal combustion systems, produce significant of air
contaminants, including particulates, carbon dioxide, sulfur and ni-
trogen oxides. An alternative solution may be the gasification or co-
gasification of various carbonaceous materials, including waste, such as
low rank coal and flotation concentrate in systems of higher efficiency
and with lower emissions than conventional combustion plants
(Kamińska-Pietrzak & Smoliński, 2013; Krawczyk, Howaniec, &
Smoliński, 2016; Lin, Harada, Suzuki, & Hatano, 2002; Smoliński &
Howaniec, 2013; Őzdemir & Żelkowski, 1998).

In this study the gasification of a low rank coal and a flotation
concentrate into hydrogen-rich gas was proposed as a promising
method of utilizing mining waste.

2. Materials and methods

2.1. Materials

Low rank coal and flotation concentrate samples were provided by
a coal mine located in the Upper Silesia region of Poland. The physical
and chemical parameters of the samples were determined in the ac-
credited laboratory of the Department of Solid Fuel Quality Assessment
of the Central Mining Institute (Poland) (see Table 1). Analyses were
made with the application of the relevant standards, testing procedures
and the following equipment: automatic thermogravimetric analyzers
LECO: TGA 701 or MAC 500 (contents of moisture, ash, volatiles acc. to
PN-G-04560:1998 and PN-G-04516:1998), calorimeters LECO: AC-600
and AC-350 (heat of combustion acc. to PN-G-04513:1981), TruS-
pecCHN analyzer (contents of carbon, hydrogen, nitrogen acc. to PN-G-
04571:1998) and TruSpecS analyzer (sulfur acc. to PN-G-04584:2001).
The fixed carbon was calculated according to the formula: 100% – W –
A – V (PN-G-04516:1998).

2.2. Experimental procedure

The gasification studies were conducted in a laboratory scale in-
stallation with a fixed bed reactor presented in Fig. 1. It is composed of
a fixed bed reactor with a volume of 0.8 L and a gasification agent
supply system. The steam is generated in the steam generator. The
temperature and pressure in the reaction zone are controlled with
a thermocouple and a manometer, respectively. The allothermal gasi-
fication of 3 g of low rank coal or flotation concentrate using steam as
the gasification agent were conducted at the temperature of 800 °C. The
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studied samples were grinded and sieved in to fractions with a particle
size below 0.2mm and put at the bottom of the reactor between two
layers of a quartz wool for better temperature distribution and pro-
tection of the samples against entrainment by the gasification media.
The reactor was heated to the temperature 800 °C with the use of
a resistance furnace in an inert gas atmosphere. When the set
temperature was reached the gasification agent was injected in to the
reactor at a flow rate of 5.3 · 10−2 cm3/s. The amount of the product gas
and its composition (CO2, CO, H2 and CH4) were analyzed with the
application of a mass flow meter and a gas chromatograph.

3. Results and discussion

The study of the steam gasification of the low rank coal and flota-
tion concentrate in the fixed bed reactor focused on the optimization of
hydrogen-rich gas production.

The average total amount of the product gas in steam gasification at
800 °C was 6934 cm3 and 7182 cm3 for the low rank coal and the flo-
tation concentrate, respectively (see Fig. 2). The respective amounts of
hydrogen were 4299 cm3 and 4525 cm3.

Reactivity of fuel is the parameter enabling the assessment of the
reaction rate in a thermochemical conversion process (Smoliński, 2011;
Takarada, Tamai, & Tomita, 1985). The reactivity of the chars of car-
bonaceous materials is most often determined for 50% carbon conver-
sion. In the study presented this was calculated based on the on-line gas
composition analysis and the flow rates of the gaseous products, based

on the following equation:
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where Rx describes the reactivity for X% of carbon conversion, m0 de-
notes the initial carbon content in the fuel sample, m denotes the time
dependent carbon content in the mixture of gaseous products, tx de-
notes the time required to achieve the carbon conversion of X%
(Alonso, Borrego, Alvarez, Parra, & Menendez, 2001).

The reactivity for 50% carbon conversion, R50 for the low rank coal
(1.48 · 10−4 s−1 reached after 2292 s) was lower than the one de-
termined for the flotation concentrate (1.89 · 10−4 s−1 reached after
2112 s). The maximum reaction rate determined by the maximum re-
activity was similar for both fuels and equaled 3.28 · 10−4 s−1 and 3.29
· 10−4 s−1 for the low rank coal and the flotation concentrate, re-
spectively. The reactivity of fuel in a thermochemical conversion pro-
cess depends on operating parameters (pressure, temperature and
heating rate) as well as the physical and chemical parameters of the
fuels (the content of carbon, volatiles, ash and fixed carbon).

Based on the total yield of the product gas and its average compo-
sition the calorific value was calculated as:
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where ci denotes the content of the particular component in the product
gas (%mass) and di denotes the heat of combustion (kJ kg−1). The ca-
lorific values of the product gas generated in the steam gasification of
the low rank coal and flotation concentrate were 11466 kJ/kg and
11259 kJ/kg, respectively. Based on the results presented in Fig. 2 it
may be concluded that steam gasification with the production of hy-
drogen-rich gas, as an environment friendly energy carrier, may be
considered a promising method of the utilization of mining waste.

4. Conclusions

Gasification may be considered as a promising method utilizing low
rank coals and flotation concentrate.

Both fuel samples studied presented similar reactivity, indicating
their suitability for steam gasification process focused on hydrogen-rich
gas production. The calorific value of the product gas for both of the
fuels was comparable with the values reported for higher rank coal
gasification.

Table 1
Basic physical and chemical parameters of studied low rank coal (LRC) and
flotation concentrate (FC).

No Parameter, unit LRC FC

1 Moisture W, % 1.32 1.74
2 Ash A, % 2.66 4.47
3 Volatiles V, % 32.18 27.38
4 Heat of combustion Qs, kJ/kg 33697 32745
5 Calorific value Qi,, kJ/kg 32506 31663
6 Total sulfur S, % 0.29 0.42
7 Carbon Ct, % 82.19 80.16
8 Hydrogen Ht, % 5.31 4.76
9 Nitrogen N, % 1.52 1.35
10 Fixed carbon, % 63.55 65.99

Fig. 1. Lab-scale installation for low rank coal and flotation concentrate steam gasification (1 – gas inlets system with valves and flow regulators; 2 – water pump; 3 –
steam generator; fixed bed reactor with resistance furnace; 5 – flow meter; 6 – gas chromatograph).
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The process of steam gasification seems to be an attractive alter-
native to the conventional combustion of low rank coal and flotation
concentrate.
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