PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Possible pitfalls in the procedure for paleobiodiversity-dynamics analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Pułapki analizy paleo-bioróżnorodności
Języki publikacji
EN
Abstrakty
EN
The changes in the diversity of specific taxa during certain parts of the geological past (paleobiodiversity dynamics) can, in principle, be established by counting the number of the fossil taxa present (worldwide or in a specific study area) in rocks dated for the time interval under study. Numerous obstacles are present, however, for instance in the form of lacking field data, disappeared collections, ambiguous identifications, temporary ‘disappearence’ of taxa, and dating problems. One major problem is the fact that, particularly in regional studies in some countries, a local, regional or national chronostratigraphic terminology is used rather than the chronostratigraphy recommended by the International Stratigraphic Commision of the International Union of Geological Sciences. This hampers international correlation and makes precise global paleodiversity-dynamics analyses extremely difficult. A reliable insight into the true paleodiversity dynamics requires not only that the various problems are recognized, but also that their consequences are eliminated or, if this is impossible, minimized. This is particularly important if the effects of mass extinctions on fauna and flora are investigated. Each analysis of paleobiodiversity-dynamics analysis of phenomena related to mass extinctions should therefore try to quantify the impact that missing data or inaccuracies of any kind may have on the final results; such an analysis should, in addition, try to find a solution for the major problems, so as to avoid significant inaccuracies of the calculated values. Large electronic databases can help, since about a decade, to diminish possible errors in diversity estimates. Paleobiodiversity should preferably be expressed in the form of values with a certain band with, indicating the inaccuracy, rather than in the form of exact values.
PL
Zmiany w zróżnicowaniu gatunków w pewnych przedziałach czasu przeszłości geologicznej (dynamika paleo-bioróżnorodności) są z zasady ustalane poprzez zliczanie liczby taksonów skamieniałości (na świecie lub na wybranym obszarze) w skałach datowanych na badany interwał czasowy. Tym niemniej procedura ta napotyka wiele przeszkód, np. w postaci braku danych z jakiegoś obszaru, zagubionych kolekcji, niejednoznacznych identyfikacji, czasowego „zaniku” taksonów czy problemów datowania. Jednym z głównych problemów, zwłaszcza w badaniach regionalnych w niektórych krajach, jest stosowanie lokalnej, regionalnej lub krajowej terminologii chronostratygraficznej, a nie chronostratygrafii rekomendowanej przez Międzynarodową Komisję Stratygraficzną przy Międzynarodowej Unii Nauk Geologicznych. Utrudnia to międzynarodowe korelacje i czyni niezwykle trudnym przeprowadzenie precyzyjnej globalnej analizy dynamiki paleo-bioróżnorodności. Wiarygodny wgląd w prawdziwą dynamikę paleo-bioróżnorodności wymaga nie tylko rozpoznania różnych problemów, ale również wyeliminowania ich konsekwencji, a gdy to niemożliwe, zminimalizowania ich. Jest to szczególnie ważne w przypadku, gdy badane są następstwa masowego wymierania fauny i flory. Dlatego każda analiza dynamiki paleo-bioróżnorodności zjawisk związanych z masowym wymieraniem powinna zawierać próbę ilościowego oszacowania wpływu, jakie brakujące dane lub niedokładności jakiegokolwiek rodzaju mogą wywierać na końcowe wnioski. Taka analiza powinna próbować znaleźć rozwiązanie dla głównych problemów, ażeby uniknąć znaczących niedokładności w obliczonych wartościach. Duże elektroniczne bazy danych, dostępne od około 10 lat, mogą pomóc w zmniejszeniu możliwych błędów przy szacowaniu różnorodności. Najlepiej, gdyby paleo-bioróżnorodność była wyrażana w formie wartości w pewnym zakresie, wskazującym na niedokładność, a nie w formie precyzyjnej wartości.
Czasopismo
Rocznik
Strony
37--50
Opis fizyczny
Bibliogr. 92 poz.
Twórcy
  • Department of Geology, University of Pretoria, Pretoria 0002, South Africa
  • Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznan, Poland;
Bibliografia
  • ALROY J., 2000: New methods for quantifying macroevolutionary patterns and processes. Paleobiology, 26: 707-733.
  • ALROY J., 2003: Global databases will yield reliable measures of global biodiversity. Paleobiology, 29: 26-29.
  • ALVAREZ L.W., ALVAREZ W., ASARO F. & MICHEL H.V., 1980: Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208: 1095-1108.
  • ARZ J.A., MOLINA E. ARENILLAS I. & SEPÚVEDA R., 2000: La estabilidad evolutiva de los foraminiferos planctónicos en el Maastrichtiense Superior y su extinctión en el límite Cretácico/Terciario de Caravaca, España [The evolutionary stability of the planktonic foraminifers in the Upper Maastrichtian and their extinction at the Cretaceous/Tertiary boundary near Caravaca, Spain]. Revista Geologica de Chile, 27: 27-47.
  • BASOV V.A. & KUZNETSOVA K.I., 2000: Dinamika raznoobrazija i evoljutsionnyje tendentsii jurskikh foraminifer [Diversity dynamics and evolutionary trends of Jurassic foraminifers]. Stratigrafija. Geologitcheskaja korreljatsija, 8: 74-88.
  • BENTON M.J., 1995: Diversification and extinction in the history of life. Science, 268: 52-58.
  • BOUCOT A.J., 2006: So-called background extinction rate is a sampling artefact. Palaeoworld, 15: 127-134.
  • BOULTER M.C., 1997: Plant macroevolution through the Phanerozoic. Geology Today, 23: 102-106.
  • BOULTER M.C., SPICER R.A. & THOMAS B.A., 1988: Patterns of plant extinction from some palaeobotanical evidence.
  • [In:] G.P. LARWOOD (Ed.): Extinction and survival in the fossil record. Systematics Association Special Volume 34, 1-36.
  • BRETT C.E. & BAIRD G.C. (Eds.), 1997: Paleontological events: Stratigraphical, ecological, and evolutionary implications. Columbia University Press, NY, 604 pp.
  • BUCK C.E. & BARD E. 2007: A calendar chronology for Pleistocene mammoth and horse extinction in North America based on Bayesian radiocarbon calibration. Quaternary Science Reviews, 26: 2031-2035.
  • BUDD A.F., FOSTER C.T., DAWSON J.P. & JOHNSON K.G., 2001: The Neogene marine biota of tropical America (“NMITA”) database: accounting for biodiversity in paleontology. Journal of Paleontology, 75: 743-751.
  • BUSH A.M. & BAMBACH R.K., 2004: Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology, 112: 625-642.
  • COURTILLOT V., 2007: Evolutionary catastrophes - The science of mass extinction. Cambridge University Press, Cambridge, 173 pp.
  • CRAMPTON J.S., BEU A.G., COOPER R.A., JONES C.M., MARSHALL B. & MAXWELL P.A., 2003: Estimating the rock volume bias in paleobiodiversity studies. Science, 301: 358-360.
  • DAVYDOV V.I. & LEVEN E.JA., 2003: Correlation of Upper Carboniferous (Pennsylvanian) and Lower Permian (Cisuralian) marine deposits of the Peri-Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 196: 39-57.
  • ERWIN D.H., 2006: Extinction: how life on earth nearly ended 250 million years ago. Princeton University Press, Princeton, 306 pp.
  • FARA E., 2001: What are Lazarus taxa? Geological Journal, 36: 291-303.
  • FARA E. & BENTON M.J., 2000: The fossil record of the Cretaceous tetrapods. Palaios, 15: 161-165.
  • FLESSA K.W. & JABLONSKI D., 1983: Extinction is here to stay. Paleobiology, 9: 315-321.
  • FOOTE M., 2000: Origination and extinction components of taxonomic diversity: general problems. Paleobiology, 26 (suppl.): 74-102.
  • FOOTE M., 2007: Extinction and quiescence in marine animal genera. Paleobiology, 33: 261-272.
  • GRADSTEIN F.M., OGG J.G., SMITH A.G., AGTERBERG F.P., BLEEKER W., COOPER R.A., DAVYDOV V., GIBBARD P., HINNOV L.A., HOUSE M.R., LOURENS L., LUTERBACHER H.P., MCARTHUR J. MELCHIN M.J., ROBB L.J., SHERGOLD J., VILLENEUVE M., WARDLAW ALI J., BRINKHUIS H., HILGEN F.J. HOOKER J. HOWARTH R.J., KNOLL A.H., LASKAR J., MONECHI S., PLUMB K.A., POWELL J., RAFFI I., ROHL U., SADLER P., SANFILIPPO A., SCHMITZ B., SHACKLETON N.J., SHIELDS G.A., STRAUSS H., VAN DAM J., VAN KOLFSCHOTEN TH., VEIZER J. & WILSON D., 2004: A geologic time scale 2004. Cambridge University Press, Cambridge, 589 pp.
  • GRAYSON R.P. & PLATER A.J , 2007: An excess 226Ra chronology for deep-sea sediments from Saanich Inlet, British Columbia. Chemical Geology, 244: 646-663.
  • GUEX J., MORARD A., BARTOLINI A, & MORETTINI E., 2001: Découverte d’une importante lacune stratigraphique à la limite Domérien-Toarcien: implications paléoocéanographiques. Bulletin de la Société vaudoise des Sciences Naturelles, 87: 277-284.
  • HAMMER O. & HARPER D., 2005: Paleontological data analysis. Blackwell Publishing, Malden, 351 pp.
  • HAQ B. (Ed.), 2007: The geological time table (6th ed.). Elsevier, Amsterdam.
  • HAQ B.U. & VAN EYSINGA W.B., 1987: Geological time table (4th ed.). Elsevier Science, Amsterdam.
  • HINNOV L.A. & PARK J., 1998: Detection of astronomical cycles in the stratigraphic record by frequency modulation (FM) analysis. Journal of Sedimentary Research, 68: 524-539.
  • HLADIL J., 1994: Refugia in ecology: a question of their existence and their basic attributes. GeoLines, 1: 5-10.
  • HLADILOVA S., 2000: Some remarks on the structure and function of refugia in ecology and palaeoecology. Paläontologische Zeitschrift, 74: 459-464.
  • ICS (INTERNATIONAL COMMISSION ON STRATIGRAPHY), 2006: International Stratigraphic Chart. International Union of Geological Sciences.
  • JABLONSKI D., 1986: Background and mass extinction: the alternation of macroevolutionary regimes. Science, 231: 129-133.
  • KAUFMANN B., 2006: Calibrating the Devonian Time Scale: A synthesis of U/Pb ages and conodont stratigraphy. Earth-Science Reviews, 76: 175-190.
  • KUCERA, M. 2007: Planktonic foraminifera as tracers of past oceanic environments. [In:] C. HILLAIRE-MARCEL & A. DE VERNAL (Eds.): Proxies in Late Cenozoic paleoceanography. Elsevier, Amsterdam, 213-262.
  • LÖSER H., 2004: PaleoTax - a database program for paleontological data. Computers & Geosciences, 30: 513-521.
  • MCALLISTER REES P., 2002: Land-plant diversity and the end-Permian mass extinction. Geology, 30: 827-830.
  • MCGHEE G.R., 1996: The Late Devonian mass extinction. The Frasnian-Famennian crisis. Columbia University Press, New York, 303 pp.
  • MCGHEE J., SHEEHAN P.M., BOTTJER D.J. & DROSER M.L., 2004: Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology, 211: 289-297.
  • MEYEN S.V., 1987: Fundamentals of Paleobotany. Chapman and Hall, London, 432 pp.
  • MIKLUKHO-MAKLAJ A.D. & MIKLUKHO-MAKLAJ K.V., 1966: Krymo-kavkazskaja al’pijskaja skladtchataja oblast’ [The Crimean-Caucasian Alpine folded region]. [In:] B.P. LIKHAREV (Ed.): Stratigrafija SSSR. Permskaja sistema. Nedra, Moskva, 391-402.
  • MORARD A., GUEX J., BARTOLINI A., MORETTINI E. & DE WEVER P., 2003: A new scenario for the Domerian-Toarcian transition. Bulletin de la Société Géologique de France, 174: 351-356.
  • MUNDI R., LUDWIG K.R., METCALFE I. & RENNE P.R., 2004: Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science, 305: 1760-1763.
  • NESTEROV I.I., 1999: Vremja v istorii Zemli. Izvestija Vysshikh Utchebnykh Zavedenij [Time in the history of the Earth]. Neft’ i Gaz, 2: 6-11.
  • NIKLAS K.J., TIFFNEY B.H. & KNOLL A.H., 1985: Patterns in vascular land plant diversification: a factor analysis at the species level. [In:] J.W. VALENTINE (Ed.): Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, 97-128.
  • NISHIDA H., 1991: Diversity and significance of Late Cretaceous permineralized plant remains from Hokkaido, Japan. Botanical Magazine, 104: 253-273.
  • NOVIK E.O., 1978: Flora i fitostratigrafija verkhnego karbona Severnogo Kavkaza [Flora and phytostratigraphy of the Upper Carboniferous of the Northern Caucasus]. Naukova Dumka, Kiev, 196 pp.
  • PALMER A.R. & GEISSMAN J., 1999: Geologic time scale. Geological Society of America, Boulder, CO.
  • PETERS S.E., 2006: Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology, 32: 387-407.
  • PETERS S.E. & FOOTE M., 2001: Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology, 27: 583-601.
  • PHILIPPE M., BARALE G., GOMEZ B., GUIGNARD G. & THEVENARD F., 1999: Paléodiversifications de flores terrestres phanérozoïques. Geobios, 32: 325-331.
  • RAUP D.W. & SEPKOSKI J.J., 1982: Mass extinctions in the marine fossil record. Science, 215: 1501-1503.
  • RETALLACK G.J., 1995: Permian-Triassic life crisis on land. Science, 267: 77-80.
  • RICKARDS R.B. & WRIGHT A.J., 2002: Lazarus taxa, refugia and relict faunas: evidence from graptolites. Journal of the Geological Society, London, 159: 1-4.
  • RIEGL B. & PILLER W.E., 2003: Possible refugia for reefs in times of environmental stress. International Journal of Earth Sciences, 92: 520-531.
  • ROHLAND N., MALASPINAS A.-S., POLLACK J.L., SLATKIN M., MATHEUS P. & HOFREITER M., 2007: Proboscidan mitogenomics: chronology and mode of elephant evolution using Mastodon as outgroup. PloS Biology, 5 (8), e207 doi:10.1371/journal.pbio.0050207.
  • RUBAN D.A., 2003: The creation of an electronic database for studying fossil floras of Northern Caucasia. Paleontological Journal, 37: 443-447.
  • RUBAN D.A., 2004: Diversity dynamics of Early-Middle Jurassic brachiopods of Caucasus, and the Pliensbachian-Toarcian mass extinction. Acta Palaeontologica Polonica, 49: 275-282.
  • RUBAN D.A., 2005: Mesozoic marine fossil diversity and mass extinctions: an experience with the middle XIX century paleontological data. Revue de Paléobiologie, 24: 287-290.
  • RUBAN D.A. & EFENDIYEVA M.A., 2005: Dizoksija i anoksija majkopa v zone Jugo-Vostotchnogo okontchanija Bol’shogo Kavkaza i razvitije nazemnoj flory [Dysoxia and anoxia of the Majkopian in the zone of the southeastern edge of the Greater Caucasus, and the development of terrestrial flora]. Azerbaijan National Academy of Sciences, Proceedings. The Sciences of Earth, 2: 67-74.
  • RUBAN D.A. & TYSZKA J., 2005: Diversity dynamics and mass extinctions of the Early-Middle Jurassic foraminifers: a record from the Northwestern Caucasus. Palaeogeography, Palaeoclimatology, Palaeoecology, 222: 329-343.
  • SCHOVE D.J., 1978: Tree-ring and varve scales combined, c. 13500 B.C. to A.D. 1977. Palaeogeography, Palaeoclimatology, Palaeoecology, 25: 209-23.
  • SCRUTTON C.T., 1965: Periodicity in Devonian coral growth. Palaeontology, 7: 552-558.
  • SENOWBARI-DARYAN B. & STANLEY G.D., 1998: Neoguadalupia oregonensis New Species: Reappearance of a Permian sponge genus in the Upper Triassic Wallona Terrane, Oregon. Journal of Paleontology, 72: 221-224.
  • SEPKOSKI J.J., 1993: Ten years in the library: New data confirm paleontological patterns. Paleobiology, 19: 43-51.
  • SEPKOSKI, J.J., 1997: Biodiversity: past, present, and future. Journal of Paleontology, 71: 533-539.
  • SEPKOSKI J.J., BAMBACH R.K., RAUP D.M. & VALENTINE J.W., 1981: Phanerozoic marine diversity and fossil record. Nature, 293: 435-437.
  • SMITH A.B., 2001: Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B, 356: 351-367.
  • SMITH A.B., 2007: Marine diversity through the Phanerozoic: problems and prospects. Journal of the Geological Society, London, 164: 731-745.
  • SOHN I.G., 1994: Taxonomic synonymy, what is it and why? Journal of Paleontology, 68: 669-670.
  • TIWARI R.S., 1996: Patterns of evolution of Gondwana floras and origin of angiosperms. Palaeobotanist, 45: 278-288.
  • TIWARI R.S., 2001: Was there a mass extinction of plant life at the PTB of peninsular India? Geological Survey of India, 54: 7-14.
  • TSCHUDY R.H. & TSCHUDY B.D., 1986: Extinction and survival of plant life following the Cretaceous/Tertiary boundary event, Western Interior, North America. Geology, 14: 667-670.
  • TWITCHETT R.J., 2000: Discussion on Lazarus taxa and fossil abundance at times of biotic crisis. Journal of the Geological Society, London, 157: 511-512.
  • TWITCHETT R.J., 2001: Incompleteness of the Permian-Triassic fossil record: a consequence of productivity decline? Geological Journal, 36: 341-353.
  • URBANEK A., 1993: Biotic crises in the history of Upper Silurian graptoloids: a palaeobiological model. Historical Biology, 7: 29-50.
  • URBANEK A., 1998: Oligophyly and evolutionary parallelism: A case study of Silurian graptolites. Acta Palaeontologica Polonica, 43: 549-572.
  • VAN COUVERING J.A., 2000: Chronostratigraphy and reality: Is all the world stage? GFF, 122: 173.
  • VAN LOON A.J., 1999: A revolution in paleontological taxonomy. Earth-Science Reviews, 48: 121-126.
  • VAN LOON A.J., 2003: The dubious role of Man in a questionable mass extinction. Earth-Science Reviews, 62: 177-186.
  • VERMEIJ G. & LEIGHTON L.R., 2003: Does global diversity mean anything? Paleobiology, 29: 3-7.
  • WALLISER O.H., (Ed.), 1996: Global events and event stratigraphy in the Phanerozoic. Springer Verlag, Berlin, 333 pp.
  • WALSH S.L., 2001: Notes on geochronologic and chronostratigraphic units. Geological Society of America Bulletin, 113: 704-713.
  • WATKINS R., 2002: New Record of the trimerellid brachiopod Gaskonsia, a rare Silurian Lazarus taxon. Journal of Paleontology, 76: 186-186.
  • WELLS J.W., 1963: Early investigations of the Devonian System in New York, 1656-1836. Geological Society of America, Special Paper, 74: 1-74.
  • WIBLE J.R., ROUGIER G.W., NOVACEK M.J. & ASHER R.J., 2007: Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature, 44: 1003-1006.
  • WIGNALL P.B. & BENTON M.J., 1999: Lazarus taxa and fossil abundance at times of crisis. Journal of the Geological Society, London, 156: 453-456.
  • WIGNALL P.B. & BENTON M.J., 2000: Discussion on Lazarus taxa and fossil abundance at times of biotic crisis, reply. Journal of the Geological Society, London, 157: 512.
  • WING S.L., 2004: Mass extinction in plant evolution. [In:] P.D. TAYLOR (Ed.): Extinctions in the history of life. Cambridge University Press, Cambridge, 61-97.
  • WING S.L. & DI MICHELE W.A., 1995: Conflict between local and global changes in plant diversity through geological time. Palaios, 10: 551-564.
  • YOSHIDA K., 2002: Long survival of „living fossils” with low taxonomic diversities in an evolving food web. Paleobiology, 28: 464-473.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1689a01-1131-43a2-815d-7bb5d7dfad1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.