PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quality-cost analysis of modern carburising technology implementation in the production cycle of cog elements for the aviation industry

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the study was to analyse the possibility of introducing vacuum carburising technology with pre-nitriding in the aviation industry. Design/methodology/approach: The samples have been tested with new technology and the planet gear requirements for aviation applications were determined. The effect of pre-nitriding technology used before vacuum carburising was also investigated for antidiffusional surface protection. A cost analysis of replacing the conventional technology with a new low-pressure carburising technology has also been introduced. Findings: Structural characteristics of the obtained layers were determined in terms of carbon concentration distribution, effective and total thicknesses, hardness of the surface and core, structure, grain size, residual austenite content and lack of decarburization and internal oxidation. The degree of degradation of various forms of anti-diffusion protections in the form of pastes and coppering and their effect on the surface layer have also been investigated. The comparative economic analysis of the use of conventional and vacuum technologies, namely the carburization in a function of the required thickness of the hardened layer and temperatures of processes, has also been made. Research limitations/implications: Basing on the studies and analyses carried out in this work, it can be concluded that the introduction of pre-nitriding carburising technology instead of conventional carburising technology in endothermic atmosphere is justified qualitatively and economically alike. Practical implications: The analysis of the test results confirms that it is possible to meet the requirements of the aviation industry through high temperature pre-nitriding vacuum carburising. The results of anti-diffusion protection tests confirm that it is possible to use anti-fouling pastes instead of electrolytic copper. Cost analysis confirms the economic benefits of implementing a new technology. The implication of the above is the willingness of the proposed technology to allow testing in the aviation industry. Originality/value: The research confirming the fulfilment of quality requirements set for hardened layers in aviation applications which also have an economic advantage.
Rocznik
Strony
75--84
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • Institute Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
autor
  • Institute Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
Bibliografia
  • [1] K. Widanka, W. Dudziński, Vacuum carburizing of steels, Materials Engineering 5 (1999) 224-227 (in Polish).
  • [2] K. Dybowski, R. Pietrasik, Contribution of the carbon deposit in vacuum carburizing process, Materials Engineering 5 (2006) 939-942 (in Polish).
  • [3] P. Kula, M. Korecki, R. Pietrasik, E. Stańczyk-Wołowiec, K. Dybowski, Ł. Kołodziejczyk, R. Atraszkiewicz, M. Krasowski, FineCarb® - the flexible system for low pressure carburizing. New options and performance, Proceedings of the 17th IFHTSE Congress 2008, Kobe - Japan, 2008, 133-136.
  • [4] Z. Gawroński, J. Sawicki, Toothed wheel optimization by means of the finite element analysis, Mechanics and Mechanical Engineering 4/2 (2000) 183-189.
  • [5] Z. Gawroński, J. Sawicki, Technological surface layer selection for small module pitches of gear wheels working under cyclic contact loads, Materials Science Forum 513 (2006) 69-74.
  • [6] K. Dybowski, J. Sawicki, P. Kula, B. Januszewicz, R. Atraszkiewicz, S. Lipa, The effect of the quenching method on the deformations size of gear wheels after vacuum carburizing, Archives of Metallurgy and Materials 61/2B (2016) 157-162.
  • [7] J. Olejnik, Vacuum furnaces with high pressure charge cooling, Metallurgy 3 (2002) 7-8.
  • [8] J. Kowalewski, M. Korecki, J. Olejnik, Next Generation HPQ Vacuum Furnace, Heat Treating Progress 8 (2008) 39-44.
  • [9] E. Wołowiec-Korecka, M. Korecki, W. Stachurski, P. Zgórniak, J. Sawicki, A. Brewka, M. Sut, M. Bazel, System of single-piece flow case hardening for high volume production, Archives of Materials Science and Engineering 79/1 (2016) 37-44.
  • [10] M. Korecki, E. Wołowiec-Korecka, M. Sut, A. Brewka, W. Stachurski, P. Zgórniak, Precision case hardening by low pressure carburizing (LPC) for high volume production, Journal of Heat Treatment and Materials 72/3 (2017) 175-183.
  • [11] P. Hermanowicz, J. Smolik, J. Bujak, Vacuum carburizing of blind holes made in 16HG steel, Maintenance Problems 4 (2010) 47-57.
  • [12] P. Kula, J. Olejnik, P. Heilmann, The mixture for carburizing under low pressure, Patent P-3 56754, 2002.
  • [13] P. Kula, J. Olejnik, P. Heilmann, The method of carburizing steel in oxygen free atmospere under low pressure, Patent P-347192, 2001.
  • [14] P. Kula, R. Pietrasik, K. Dybowski, M. Korecki, J. Olejnik, PreNitLPC® - the modern technology for Automotive, New Challenges in Heat Treatment and Surface Engineering, Proceedings of the Conference in honour of prof. Bozidar Lisic, Dubrownik-Cavtat, Croatia, 2009, 165-170.
  • [15] M. Korecki, J. Olejnik, Z. Szczerba, M. Bazel, Single-Chamber 25 bar HPGQ Vacuum Furnace with Quenching Efficiency Comparable to Oil, Industrial Heating 9 (2009) 73-77.
  • [16] W. Luty, Coolants hardening, WNT, Warsaw, 1986 (in Polish).
  • [17] P. Kula, Engineering of surface layer, Lodz University of Technology Press, Lodz, 2000 (in Polish).
  • [18] R. Atraszkiewicz, B. Januszewicz, Ł. Kaczmarek, W. Stachurski, K. Dybowski, A. Rzepkowski, High pressure gas quenching: Distortion analysis in gears after heat treatment, Materials Science & Engineering A 558 (2012) 550-557.
  • [19] B.W. Kruszyński, Z. Gawroński, J. Sawicki, P. Zgórniak, Enhancement of gears fatigue properties by modern thermo-chemical treatment and griding processes, Mechanics and Mechanical Engineering 12/4 (2008) 387-395.
  • [20] P. Kula, R. Pietrasik, S. Pawęta, K. Dybowski, M. Korecki, Protection against carburization in vacuum technology, Proceedings of the SECO/WARWICK 15th Seminar „New Trends in Heat Treatment", Łagów, Poland, 2012, 59-65.
  • [21] J. Baczewski, D. Kośmider-Łuniewska, J. Brzeziński, Paste for protecting steel during a heat treatment and thermochemical treatment processes, Patent P-77209, 1974.
  • [22] Z. Gawroński, A, Malasiński, J, Sawicki, Elimination of galvanic copper plating process used in hardening of conventionally carburized gear wheels, International Journal of Automotive Technology 11/1 (2010) 127-131.
  • [23] Z. Gawroński, A. Malasiński, J. Sawicki, A selection of the protective atmosphere eliminating the inter-operational copper plating step in the processing of gear wheels, Archives of Materials Science and Engineering 44/1 (2010) 51-57.
  • [24] S. Pawęta, P. Kula, R. Pietrasik, J. Olejnik, New PreNitLPC® vacuum carburizing technology and conventional carburizing - comparative cost analysis, Mechanical Review 9 (2010) 19-22 (in Polish).
  • [25] http://podatki.gazetaprawna.pl/artykuly/3645,nie_wiad omoJak_liczyc_ryczalt.html, Access in: 09.02.2010 (in Polish).
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a167f32b-ec84-40cd-89c3-1bc617edd766
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.