PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transmission of ultrafine particles through separating systems of dust samplers

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In underground mines there is a radiation hazard associated with natural radioactive nuclides. The main sources of radiation exposure in Polish mines are short-lived radon decay products, radioactive mine water containing radium and the sediments precipitated from these waters. For miners, the most common hazard is usually the short-lived radon decay products. Aspirators, equipped with separation systems, are mostly used in order to control this hazard. Inside these aspirators there are meters which measure the radiation emitted by radioactive aerosols collected on the filter. The purpose of these systems is to remove particles from the air stream that do not form the respirable fraction. At the same time, however, a deposition of small-size aerosols takes place in them because of the high values of their corresponding diffusion coefficients. This excludes the possibility of their proper detection by radiation meters. In this paper, the transmission of particles up to 100 nm in size by the separating systems is evaluated. The evaluated transmission ranged from about 60% for sizes of 7 nm, reaching up to 95% at the boundary values of the tested range. The influence of the particle distribution of the aerosols on the radiation calibration coefficients was also investigated in a radon chamber, through their exposure to conditions where the air contained low aerosol concentrations of about 4.0×108 particles/m3 and also when it was nearly 100-times higher. In the first case, the measured sensitivity of the meters was about 20-30% lower, which was probably due to a higher number of small aerosols and, as a result, particle transmission decreased. However, at higher aerosol concentrations, the sensitivity of the meters remained practically the same, regardless of whether the air reached the filters by the separation systems or if they were omitted.
Rocznik
Strony
48--55
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Central Mining Institute, Silesian Centre for Environmental Radioactivity (BCR), Plac Gwarków 1, 40-166 Katowice, Poland
Bibliografia
  • 1. Atomic Law. (2000). Ustawa z dnia 29 listopada 2000 r. Prawo atomowe. Dziennik Ustaw 2001 nr 3 poz. 18 [Act of 29 November 2000, Atomic Law (in Polish). Journal of Laws 2001 No. 3, item. 18].
  • 2. Chałupnik, S., Skubacz, K., & Lebecka, J. (1987). A method of absolute measurement of radon daughters concentration in air - Int. Conference “Low Radioactivities ‘85”. Bratislava: Comenius University, Veda Edition289-291.
  • 3. Council Directive (2013). Council Directive 2013/59/EURATOM of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/64/Euratom, 96/29/ Euratom, 97/43/Euratom and 2003/122/Euratom.
  • 4. Heyder, J., Gebhart, J., & Stahlhofen, W. (1980). Inhalation of aerosols: particle deposition and retention. In K. Willeke (Ed.). Generation of aerosols and facilities for exposure experiments (pp. 65-103). Michigan: Ann Arbor Science Publishers Inc.
  • 5. Hinds, C. W. (1999). Aerosol technology, properties, behavior, and measurement of airborne particles. John Wiley & Sons, Inc.
  • 6. International Commission on Radiological Protection ICRP (1994). Human respiratory tract model for radiological protection. ICRP Publication 66.
  • 7. ISO (1993). International Organization for Standardization. Workplace atmospheres - Size fraction definitions for measurement of airborne particles, Standard EN 481, 1993.
  • 8. Jacobi, W., & Eisfeld, K. (1980). Dose to tissues and effective dose equivalent by inhalation of 222Rn, 220Rn and their short-lived daughters. Gesellschaft für Strahlen und Umwelforschung MBHGSF-Report S-626, February 1980. Munich-Neuherberg: Institut für Strahlenschutz.
  • 9. Jagielak, J., Biernacka, M., Henschke, J., & Sosińska, A. (1998). Radiologiczny atlas Polski 1997 [Radiological Atlas of Poland 1997]. Warszawa: Biblioteka Monitoringu Środowiska.
  • 10. Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., et al. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16(6-7), 437-445.
  • 11. Porstendörfer, J. (1994). Properties and behavior of radon and thoron and their decay products in the air. Journal of Aerosol Science, 25(2), 219-263.
  • 12. Porstendörfer, J., & Reineking, A. (1996). Characteristics of radon daughters in mine air and the corresponding dose conversion factors. Proceedings of the International Conference on Technologically Enhanced Natural Radiation Caused By Non-Uranium Mining, 16-19 October 1996, Szczyrk, Poland (pp. 61-78). Katowice: Główny Instytut Górnictwa.
  • 13. Reineking, A., & Porstendörfer, J. (1990). “Unattached” fraction of short-lived radon decay products in indoor and outdoor environments: an improved single-screen method and results. Health Physics, 58(6), 715-727.
  • 14. Regulation, (2016). Rozporządzenie Ministra Energii z dnia 23 listopada 2016 r. w sprawie szczegółowych wymagań dotyczących prowadzenia ruchu podziemnych zakładów górniczych. Dziennik Ustaw 2017, poz. 1118 [Regulation of the Minister of Energy of 23 November 2016 on detailed requirements for the operation of underground mines. Journal of Laws 2017, item. 1118].
  • 15. Skubacz, K. (2009). Measurements of aerosol size distribution in Urban areas of Upper Silesia. Archives of Environmental Protection, 4(35), 23-34.
  • 16. Skubacz, K., & Bywalec, T. (2003). Monitoring of short-lived radon progeny in mines. Radiation Protection Dosimetry, 103(3/1), 241-246. http://dx.doi.org/10.1093/oxfordjournals.rpd.a006139.
  • 17. Skubacz, K., Wojtecki, Ł., & Urban, P. (2016a). The influence of particle size distribution on dose conversion factors for radon progeny in the underground excavations of hard coal mine. Journal of Environmental Radioactivity, 162-163, 68-79. http://dx.doi.org/10.1016/j.jenvrad.2016.05.020.
  • 18. Skubacz, K., Wojtecki, Ł., & Urban, P. (2016b). Aerosol concentration and particle size distributions in underground excavations of hard coal mine. International Journal of Occupational Safety and Ergonomics, 23(3), 318-327. http://dx.doi.org/10.1080/10803548.2016.1198553.
  • 19. UNSCEAR (2008). United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR 2008, Report to the General Assembly with Scientific Annexes Volume I.
  • 20. Zock, C., Porstendörfer, J., & Reineking, A. (1996). The influence of biological and aerosol parameters of inhaled shortlived radon decay products on human lung dose. Radiation Protection Dosimetry, 63(3), 197-206. http://dx.doi.org/10.1093/oxfordjournals.rpd.a031530.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a163df63-bf9a-4b38-9ade-4586ddc44361
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.