PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of confounding factors on the relationship between muscle contraction level and MF and MPF values of EMG signal: a review

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this article is to gather results of studies on the relationship between median frequency (MF) and mean power frequency (MPF) and the level of muscle contraction, and to use those results to discuss the differences in the trends according to factors related to measurement technique and subject. Twenty-one studies with 63 cases for upper limb muscles and nine studies with 31 cases for lower limb muscles were analysed. Most results showed an increase in parameters with an increased level of muscle contraction, only some studies showed a decrease. The influence on parameters of the level of muscle contraction and factors such as subjects, type of contraction, muscle length and electrodes was analysed for each muscle. It was concluded that when analysing the influence of different factors on MF and MPF, because those factors interact they should be considered together, not separately.
Rocznik
Strony
77--91
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
autor
  • Central Institute for Labour Protection - National Research Institute (CIOP-PIB), Poland
Bibliografia
  • [1] Botter A, Lanfranco F, Merletti R, et al. Myoelectric fatigue profiles of three knee extensor muscles. Int J Sports Med.2009;30(6):408-417.
  • [2] Farina D, Merletti R. Methods for estimating muscle fibre conduction velocity from surface electromyographic signals. Med Biol Eng Comput. 2004;42(4):432-445.
  • [3] Farina D, Fosci M, Merletti R. Motor unit recruitment strategies investigated by surface EMG variables. Eur JAppl Physiol. 2002;92:235-47.
  • [4] Kellis E, Katis A. Reliability of EMG power-spectrum and amplitude of the semitendinosus and biceps femoris muscles during ramp isometric contractions. J Electromyogr Kinesiol. 2008;18(3):351-358.
  • [5] Cechetto AD, Parker PA, Scott RN. The effects of four time-varying factors on the mean frequency of amyoelectric signal. J Electromyogr Kinesiol. 2001;11:347-354.
  • [6] Krivickas LS, Nadler SF, Petroski GF, et al. Spectral analysis during fatigue. Surface and fine wire electrode comparison. Am J Med Rehabil. 1996;75(1):15-20.
  • [7] Bilodeau M, Arsenault AB, Gravel D, et al. The influence of an increase in the level of force on the EMG power spectrum of elbow extensors. Eur J Appl Physiol Occup Physiol.1990;61(5–6):461-466.
  • [8] Onishi H, Yagi R, Akasaka K, et al. Relationship between EMG signals and force In human vastus lateralis muscle rusing multiple bipolar wire electrodes. J Electromyogr Kinesiol. 2000;10:59-67.
  • [9] Bilodeau M, Schindler-Ivens S, Williams DM, et al. EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men andwomen. J Electromyogr Kinesiol. 2003;13(1):83-92.
  • [10] Esposito F. Malgrati D, Veicsteinas A, et al. Time and frequency domain analysis of electromyogram and sound myogram in the elderly. Eur J Appl Physiol. 1996;73:503-510.
  • [11] Bilodeau M, Arsenault AB, Gravel D, et al. EMG power spectra of elbow extensors during ramp and step iso-metric contractions. Eur. J. Appl. Physiol. Occup. Physiol.1991;63(1):24-28.
  • [12] Esposito F, Ce E, Gobbo M, et al. Surface EMG and mechanomyogram disclose isokinetic training effects on quadriceps muscle in elderly people. Eur. J. Appl .Physiol.2005;94:549-557.
  • [13] Bernardi M, Solomonow M, Nguyen G, et al. Motor unit recruitment strategy changes with skill acquisition. Eur J.Appl. Physiol. Occup. Physiol. 1996;74(1-2):52-59.
  • [14] Bilodeau M, Arsenault AB, Gravel D, et al. EMG power spectrum of elbow extensors: a reliability study. Electromyogr and Clin Neurophysiol. 1994;34:149-158.
  • [15] Bilodeau M, Cincerea M, Gervais S, et al. Changes in the electromyographic spectrum power distribution caused by a progressive increase in the force level. Eur J Appl Physiol.1995;71:113-123.
  • [16] Petrofsky J, Laymon M. Muscle temperature and EM Gamplitude and frequency during isometric exercise. Aviat Space Environ Med. 2005;76:1024-1030.
  • [17] Rainoldi A, Galardi G, Maderna L, et al. Repeatability of surface EMG variables during voluntary isometric contractions of the biceps brachii muscle. J Electromyogr Kinesiol.1999;9:105-119.
  • [18] Kaplanis PA, Pattichis CS, Hadjileontiadis LJ, et al. Sur-face EMG analysis on normal subjects based on isometric voluntary contraction. J Electromyogr Kinesiol. 2009;19:157-171.
  • [19] Roman-Liu D, Konarska M. Characteristics of power spectrum density function of EMG during muscle con-traction below 30%MVC. J Electromyogr Kinesiol.2009;19(5):864-874.
  • [20] Inbar GF, Allin J, Paiss O, et al. Monitoring surface EMGspectral changes by the zero crossing rate. Med Biol EngComput. 1986;24(1):10-18.
  • [21] Arjunan S, Kumar D, Kalra C, et al. Effect of age and gender on the surface electromyogram during various levels of iso-metric contraction. 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts USA. August 30 -September 3, 2011.[22] De Luca DJ, Sabbahi MA, Roy SH. Median frequency of the myoelectric signal. Eur J App Physil. 1986;55:457-464.
  • [23] Gelli F, Del Santo F, Popa T, et al. Factors influencing the relation between corticospinal output and muscle force during voluntary contractions. Eur J Neurosci.2007;25(11):3469-3475.
  • [24] Beck TW, Housh TJ, Johnson GO, et al. Comparison Fourier and wavelet transform procedures for examining the mechano-myographic and electromyographic frequency. Electromyogr Clin Neurophysiol. 2005;45:93-103.
  • [25] Bilodeau M, Arsenaut AB, Gravel D, et al. Influence of gen-der on the EMG power spectrum during an increasing force level. J Electromyogr Kinesiol. 1992;2:121–129.
  • [26] Gabriel DA, Kamen G. Experimental and modeling investigation of spectral compression of biceps brachii SEMGactivity with increasing force levels. J Electromyogr Kine-siol. 2009;19:437-448.
  • [27] Cescon C, Sguazzi E, Merletti R, et al. Non-invasive characterization of single motor unit electromyographic and mechano-myographic activities in the biceps brachii muscle.J Electromyogr Kinesiol. 2006;16(1):17-24.
  • [28] Ollivier K, Portero P, Maisetti O, et al. Repeatability of surface EMG parameters at various isometric contraction levels and during fatigue using bipolar and Laplacian electrode configurations. J Electromyogr Kinesol. 2005;15:466-473.
  • [29] Gerdle B, Eriksson NE, Brundin L. The behaviour of the mean power frequency of the surface electromyogram in biceps brachii with increasing force and during fatigue. With special regard to the electrode distance. Electromyogr Clin Neurophysiol. 1990;30(8):483-489.
  • [30] Linnamo V, Strojnik V, Komi PV. Electromyogram power spectrum and features of the superimposed maximal M-wave during voluntary isometric actions in humans at dif-ferent activation levels. Eur J Appl Physiol. 2001;86(1):28-33.
  • [31] Mathur S, Eng JJ, MacIntyre DL. Reliability of surface EMG during sustained contractions of the quadriceps. J Electromyogr Kinesiol. 2005;15:102-110.
  • [32] Pincivero DM, Campy R, Salfetnicov Y, et al. Influence of contraction intensity, muscle, and gender on median frequency of the quadriceps femoris. J Appl Physiol.2001;90:804-810.
  • [33] Mulder ER, Gerrits KHL, Kleine BU, et al. High-density surface EMG study on the time course of central nervous and peripheral neuromuscular changes during 8 weeks of bed rest with or without resistive vibration exercise. J Electromyogr Kinesiol. 2009;19:208-218.
  • [34] Ricard MD, Ugrinowitsch C, Parcell AC, et al. Effects of rate of force development on EMG amplitude and frequency. Int J Sports Med. 2005;26(1):66-70.
  • [35] Cioni R, Giannini F, Paradiso C, et al. Sex differences in surface EMG interference pattern power spectrum. J App.lPhysiol. 1994;77(5):2163-2168.
  • [36] Spairani L, Barbero M, Cescon C, et al. An electromyographic study of the vastii muscles during open and closed kinetic chain submaximal isometric exercises. Int J Sports Phys Ther. 2012;7(6):617-626.
  • 37. Blijham PJ, ter Laak HJ, et al. Relation between muscle fiber conduction velocity and fiber size in neuromuscular disorders. J Appl Physiol. 2006;100:1837-1841. doi: 10.1152/japplphysiol.01009.2005
  • 38. Masuda T, De Luca CJ. Recruitment threshold and muscle fiber conduction velocity of single motor units. J Electromyogr Kinesiol. 1991;1(2):116-123. doi: 10.1016/1050-6411(91)90005-P
  • 39. Moritz CT, Barry BK, Pascoe MA, et al. Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J Neurophysiol. 2005;93(5):2449–2459. doi: 10.1152/jn.01122.2004
  • 40. Alway SE, MacDougall JD, Sale DG, et al. Functional and structural adaptations in skeletal muscle of trained athletes. J Appl Physiol. 1988;64(3):1114-1120.
  • 41. Jaworowski A, Porter MM, Holmbäck AM, et al. Enzyme activities in the tibialis anterior muscle of young moderately active men and women: relationship with body composition, muscle cross-sectional area and fibre type composition. Acta Physiol Scand. 2002;176(3):215–225. doi: 10.1046/j.1365-201X.2002.t01-2-01004.x
  • 42. Kent-Braun JA, NG AV. Skeletal muscle contractile and non-contractile components in young and older women and men. J Appl Physiol. 2000;88:662-668.
  • 43. Porter MM, Vandervoort AA, Lexel J. Aging of human muscle: structure, function and adaptability. Scand J Med Sci Sports. 1995;5:129–142. doi: 10.1111/j.1600-0838.1995.tb00026.x
  • 44. Minetto MA, Botter A, Šprager S, et al. Feasibility study of detecting surface electromyograms in severely obese patients. J Electromyogr Kinesiol. 2013;23(2):285-295. doi: 10.1016/j.jelekin.2012.09.008
  • 45. Linnamo V, Strojnik V, Komi PV. Maximal force during eccentric and isometric actions at different elbow angles. Eur J Appl Physiol. 2006;96:672-678. doi: 10.1007/s00421-005-0129-x
  • 46. Elfving B, Liljequist D, Mattsson E, et al. Influence of interelectrode distance and force level on the spectral parameters of surface electromyographic recordings from the lumbar muscles. J Electromyogr Kinesiol. 2002;12(4):295-304. doi: 10.1016/S1050-6411(02)00027-5
  • 47. Prats-Boluda GJ, Garcia-Casado JL, Martinez-de-Juan JL, et al. Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. Med Eng Phys. 2011;33(4):446–455. doi: 10.1016/j.medengphy.2010.11.009
  • 48. Beck TW, Housh TJ, Mielke M, et al. The influence of electrode placement over the innervation zone on electromyographic amplitude and mean power frequency versus isokinetic torque relationships. J Neurosci Methods. 2007;162:72-83. doi: 10.1016/j.jneumeth.2006.12.009
  • 49. Bilodeau M, Cincera M, Arsenault AB, et al. Normality and stationarity of EMG signals of elbow flexor muscle during ramp and step isometric contractions. J Electromyogr Kinesiol. 1997;7:87–96. doi: 10.1016/S1050-6411(96)00024-7
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a162c12c-bf79-4d5f-9ae4-14e304641554
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.