PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes of tribological properties of Inconel 600 after ion implantation process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Commercial Inconel 600 nickel-chromium alloy was implanted with nitrogen, titanium, chromium, copper with tin (as bronze components) and yttrium ions to doses ranging from 1.6e17 to 3.5e17 cm−2. The aim of this research was to investigate the properties of the modified alloy in the context of its application in foil bearings. The virgin and the treated samples were tribologically tested and examined by Scanning Electron Microscopy, Glow Discharge Mass Spectrometry and Energy Dispersive Spectroscopy. The technological studies were preceded by modelling of concentration values of the introduced elements. The results obtained with the use of ion implantation are discussed. There are two advantages which should be highlighted: good agreement in modelling and experimental results of depth profiles of implanted ions, wear resistance improvement of Inconel 600 surface by implantation of copper and tin ions. The tribological tests indicate that abrasion and corrosion are the predominant mechanisms of surface wear.
Rocznik
Strony
827--833
Opis fizyczny
Bibliogr. 28, rys., wykr.
Twórcy
autor
  • National Centre for Nuclear Research, 7 Andrzeja Sołtana St., 05-400 Otwock, Poland
  • Institute of Electronic Materials Technology, 133 Wólczyńska St., 01-919 Warsaw, Poland
autor
  • National Centre for Nuclear Research, 7 Andrzeja Sołtana St., 05-400 Otwock, Poland
autor
  • Tele and Radio Research Institute, 11 Ratuszowa St., 03-450 Warsaw, Poland
Bibliografia
  • [1] V.K. Lindroos and M.J. Talvitie, “Recent advances in metalmatrix composites”, J. Materials Processing Technology 53, 273-284 (1995).
  • [2] W. Węglewski, M. Basista, M. Chmielewski, and K. Pietrzak, “Modelling of thermally induced damage in the processing of Cr-Al2O3 composites”, Composites Part B: Engineering 43, 255-264 (2012).
  • [3] M. Chmielewski and W. Weglewski, “Comparison of experimental and modelling results of thermal properties in Cu-AlN composite materials”, Bull. Pol. Ac.: Tech. 61 (2), 507-514 (2013).
  • [4] K. Pietrzak, W. Olesinska, D. Kalinski, and A. Strojny- Nedza, “The relationship between microstructure and mechanical properties of directly bonded copper-alumina ceramics joints”, Bull. Pol. Ac.: Tech. 62 (1), 23-32 (2014).
  • [5] J. Zimmerman, Z. Lindemann, D. Golański, T. Chmielewski, and W. Włosiński, “Modeling residual stresses generated in Ti coatings thermally sprayed on Al2O3 substrates”, Bull. Pol. Ac.: Tech. 61 (2), 515-525 (2013).
  • [6] A. Krajewski, W. Włosiński, T. Chmielewski, and P. Kołodziejczak, “Ultrasonic-vibration assisted arc-welding of aluminum alloys”, Bull. Pol. Ac.: Tech. 60 (4), 841-852 (2012).
  • [7] C.-P.R. Ku and H. Heshmat, “Compliant foil bearing structural stiffnes analysis - Part II: Experimental investigations”, J. Tribology 115, 364-369 (1993).
  • [8] T. Chmielewski and D. Golański, “New method of in-situ fabrication of protective coatings based on Fe-Al intermetallic compounds”, J. Engineering B 225, 611-616 (2011).
  • [9] W. Wlosinski and T. Chmielewski, “Plasma-hardfaced chromium protective coatings-effect of ceramic reinforcement on their wettability by glass”, Proc. 3rd Int. Conf. Surface Engineering 1, 48-53 (2002).
  • [10] J. Piekoszewski, W. Olesinska, J. Jagielski, D. Kalinski, M. Chmielewski, Z. Werner, M. Barlak, and W. Szymczyk, “Ion implanted nanolayers in AlN for direct bonding with copper”, Solid State Phenomena 99-100, 231-234 (2004).
  • [11] M. Barlak, J. Piekoszewski, J. Stanislawski, Z. Werner, K. Borkowska, M. Chmielewski, B. Sartowska, M. Miskiewicz, W. Starosta, L. Walis, and J. Jagielski, “The effect of intense plasma pulse pre-treatment on wettabillity in ceramiccopper system”, Fusion Engineering and Design 82, 2524-2530 (2007).
  • [12] M. Barlak, W. Olesińska, J. Piekoszewski, Z. Werner, M. Chmielewski, J. Jagielski, D. Kaliński, B. Sartowska, and K. Borkowska, “Ion beam modification of ceramic component prior to formation of AlN-Cu joints by direct bonding process”, Surface and Coatings Technology 201, 8317-8321 (2007).
  • [13] J.P. Rivière, P. Méheust, J.A. Garc´ıa, R. Mart´ınez, R. S´anchez, and R. Rodr´ıguez, “Tribological properties of Fe and Ni base alloys after low energy nitrogen bombardment”, Surface and Coatings Technology 158-159, 295-300 (2002).
  • [14] K.L. Dahma, K.T. Short, and G.A. Collins, “Characterisation of nitrogen-bearing surface layers on Ni-base superalloys”, Short communication, Wear 263, 625-628 (2007).
  • [15] J.F. Lin, K.W. Chen, J.Q. Xie, C.C. Wei, J.C. Chung, M.Y. Li, and C.-F. Ai, “Effects of implantation temperature and volume flow rate ratio of nitrogen and hydrogen on nitrogen concentration distribution, mechanical properties, fatigue life, fracture toughness, and tribological behavior of plasma-nitrided P20, 718 and 420 steels”, Surface and Coatings Technology 201, 5912-5924 (2007).
  • [16] Z. Werner, J. Piekoszewski, R. Gr¨otzschel, and W. Szymczyk, “Implantation of steel from MEVVA source with bronze cathode”, Emerging Applications of Vacuum-Arc-Produced Plasma, Ion and Electron Beams 88, 187-190 (2002).
  • [17] P. Budzynski, A.A. Youssef, and B. Kamienska, “Influence of nitrogen and titanium implantation on the tribological properties of steel”, Vacuum 70, 417-421 (2003).
  • [18] J.I. Oñate, F. Alonso, and A. Garc´ıa, “Improvement of tribological properties by ion implantation”, Thin Solid Films 317, 471-476 (1998).
  • [19] M. Chmielewski, M. Barlak, K. Pietrzak, D. Kaliński, E. Kowalska, and A. Strojny-Nędza, “Tribological effects of ion implantation of Inconel 600”, Nukleonika 57 (3), 357-362 (2012).
  • [20] P. Konarski, K. Kaczorek, D. Kaliński, M. Chmielewski, K. Pietrzak, and M. Barlak, “Ion implanted inconel alloy - SIMS and GDMS depth profile analysis”, Surface and Interface Analysis 45, 494-497 (2013).
  • [21] SUSPRE, www.surrey.ac.uk/ati/ibc/research/modelling simulation/ suspre.htm.
  • [22] Inconelr alloy 600, W.No.2.4816, www.bibusmetals.com.pl.
  • [23] S.P. Bugaev, A.G. Nikolaev, E.M. Oks, P.M. Schanin, and G.Y. Yushkov, “The “TITAN” ion source”, Review of Scientific Instruments 65, 3119-3125 (1994).
  • [24] H. Ryssel, “Range distributions”, in Ion Implantation Techniques, ed. H. Glawischnig, pp. 177-193, Springer, Berlin, 1982.
  • [25] A. Haouam, K. Dawi, and B. Merzoug, “Thermodynamic modeling of the surface layer structure on Inconel 600 oxidized in a controlled atmosphere”, Scientific Study and Research - Chemistry and Chemical Engineering, Biotechnology, Food Industry 13 (1), 91-104 (2012).
  • [26] D. Kopeliovich, “Mechanisms of wear”, www.substech.com/ dokuwiki/doku.php?id=mechanisms of wear (2009).
  • [27] C. Ionescu, M. Abrudeanu, P. Ponthiaux, F. Wenger, and V. Rizea, “Effect of normal force on tribocorrosion behaviour of Ni-30Cr model alloy in LiOH-H3BO3 solution” Revue Roumaine de Chimie 56, 907-915 (2011).
  • [28] L.C. Julián and A.I. Mu˜noz “Influence of microstructure of HC CoCrMo biomedical alloys on the corrosion and wear behaviour in simulated body fluids” Tribology Int. 44, 318-329 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1615894-238b-45a6-8652-c2195dcf1e25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.