PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of a packed column for the removal of Pb(II) from solution using Theobroma cacao L. as a bioadsorbent

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water bodies contaminated with heavy metals have generated significant concern worldwide due to their toxicity, persistence, bioaccumulation, and non-biodegradability. Among these pollutants is Pb (II), which enters water sources primarily as a result of anthropogenic activities. Prolonged exposure to this contaminant can cause neurological disorders, as well as respiratory and urinary issues. This research aims to model an industrial-scale packed column using Computer-Aided Process Engineering (CAPE) to remove Pb (II) from an aqueous solution, using Theobroma cacao L. as bioadsorbent. Using Aspen Adsorption, several simulations were performed on adsorption columns with varying configurations at an industrial scale, evaluating the parametric sensitivity to bed height, inlet flow rate, and initial concentration. The results showed that the simulated adsorption columns achieved removal efficiencies of up to 99%. The optimal simulation conditions for the column simulation included a bed height of 5 m, an initial concentration of 3000 mg/L, and an inlet flow rate of 50 m3/day. It was observed that increasing the inlet flow rate reduced the breakthrough and saturation times of the process, while increasing the bed height extended these times. These findings demonstrate the potential of computational tools as valuable alternatives for predicting the performance of adsorption columns packed with biomass.
Rocznik
Strony
34--38
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
  • Faculty of Engineering, Department of Chemical Engineering, Process Design and Biomass Utilization Research Group (IDAB), Universidad de Cartagena, Colombia
  • Faculty of Engineering, Department of Chemical Engineering, Process Design and Biomass Utilization Research Group (IDAB), Universidad de Cartagena, Colombia
  • Faculty of Engineering, Department of Chemical Engineering, Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), Universidad de Cartagena, Colombia
Bibliografia
  • 1. Abdul Rahim, A. R., Mohsin, H. M., Thanabalan, M., Rabat, N. E., Saman, N., Mat, H. & Johari, K. (2020). Effective carbonaceous desiccated coconut waste adsorbent for application of heavy metal uptakes by adsorption: Equilibrium, kinetic and thermodynamics analysis. Biomass and Bioenergy, 142, 105805. DOI:10.1016/J.BIOMBIOE.2020.105805
  • 2. Adegoke, K. A., Akinnawo, S. O., Ajala, O. A., Adebusuyi, T. A., Maxakato, N. W. & Bello, O. S. (2022). Progress and challenges in batch and optimization studies on the adsorptive removal of heavy metals using modified biomass-based adsorbents. Bioresource Technology Reports, 19, 101115. DOI:10.1016/J.BITEB.2022.101115
  • 3. Agarwal, A., Upadhyay, U., Sreedhar, I. & Anitha, K. L. (2022). Simulation studies of Cu(II) removal from aqueous solution using olive stone. Cleaner Materials, 5, 100128. DOI:10.1016/j.clema.2022.100128
  • 4. Amini, M., Afyuni, M., Khademi, H., Abbaspour, K. C. & Schulin, R. (2005). Mapping risk of cadmium and lead contamination to human health in soils of Central Iran. Science of The Total Environment, 347(1–3), pp. 64–77. DOI:10.1016/J.SCITOTENV.2004.12.015
  • 5. Bahrun, M. H. V., Kamin, Z., Anisuzzaman, S. M. & Bono, A. (2021). Assessment of adsorbent for removing lead (pb) ion in an industrial-scaled packed bed column. Journal of Engineering Science and Technology, 16(2), pp. 1213–1231.
  • 6. Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R. & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in Pharmacology, 12, 643972. DOI:10.3389/FPHAR.2021.643972/BIBTEX
  • 7. Benyahia, F. & O’Neill, K. E. (2005). Enhanced voidage correlations for packed beds of various particle shapes and sizes. Particulate Science and Technology, 23(2), pp. 169–177. DOI:10.1080/02726350590922242
  • 8. Chakraborty, R., Asthana, A., Singh, A. K., Jain, B. & Susan, A. B. H. (2022). Adsorption of heavy metal ions by various low-cost adsorbents: a review. International Journal of Environmental Analytical Chemistry, 102(2), pp. 342–379. DOI:10.1080/03067319.2020.1722811
  • 9. Dixon, A. G. (1988). Correlations for wall and particle shape effects on fixed bed bulk voidage. The Canadian Journal of Chemical Engineering, 66(5), pp. 705–708. DOI:10.1002/cjce.5450660501
  • 10. Fran Mansa, R., Osong Patrick, A., Kumaresan, S. & Ming Ling, T. (2021). Simulation of Lead Removal Using Palm Kernel Shell Activated Carbon in a Packed Bed Column. Easychair, 2–15.
  • 11. Gündüz Han, D., Erdem, K. & Midilli, A. (2023). Investigation of hydrogen production via waste plastic gasification in a fluidized bed reactor using Aspen Plus. International Journal of Hydrogen Energy, 48(99), pp. 39315–39329. DOI:10.1016/J.IJHYDENE.2023.07.038
  • 12. Hu, X., Wang, B., Yan, G. & Ge, B. (2022). Simultaneous removal of phenol and Cu(II) from wastewater by tallow dihydroxyethyl betaine modified bentonite. Archives of Environmental Protection, 48(3), pp. 37–47. DOI:10.24425/AEP.2022.142688
  • 13. Koua, B. K., Koffi, P. M. E. & Gbaha, P. (2019). Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. Journal of the Saudi Society of Agricultural Sciences, 18(1), pp. 72–82. DOI:10.1016/j.jssas.2017.01.002
  • 14. Lubiano, M. L. R. M., Manacup, C. V. L., Soriano, A. N. & Rubi, R. V. C. (2023). Continuous Biosorption of Pb2+ with Bamboo Shoots (Bambusa spp.) using Aspen Adsorption Process Simulation Software. ASEAN Journal of Chemical Engineering, 23(2), pp. 153–166. DOI:10.22146/AJCHE.77314
  • 15. Mohamed, R. M., Hashim, N., Abdullah, S., Abdullah, N., Mohamed, A., Asshaary Daud, M. A. & Aidil Muzakkar, K. F. (2020). Adsorption of Heavy Metals on Banana Peel Bioadsorbent. Journal of Physics: Conference Series, 1532(1), 012014. DOI:10.1088/1742-6596/1532/1/012014
  • 16. Murthy, S., Bali, G. & S.K, S. (2012). Lead biosorption by a bacterium isolated from industrial effluents International Journal of Microbiology Research. International Journal of Microbiology Research, 4(3), pp. 196–200.
  • 17. Nikam, S., Mandal, D. & Dabhade, P. (2022). LDF based parametric optimization to model fluidized bed adsorption of trichloroethylene on activated carbon particles. Particuology, 65, pp. 72–92. DOI:10.1016/J.PARTIC.2021.05.012
  • 18. Raj, K. & Das, A. P. (2023). Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environmental Chemistry and Ecotoxicology, 5, pp. 79–85. DOI:10.1016/J.ENCECO.2023.02.001
  • 19. Sánchez, A. P., Sánchez, E. J. P. & Silva, R. M. S. (2019). Simulation of the acrylic acid production process through catalytic oxidation of gaseous propylene using ChemCAD® simulator. Ingeniare, 27(1), pp. 142–150. DOI:10.4067/S0718-33052019000100142
  • 20. Soriano, A. N., Orfiana, O. N., Pangon, M. B. J., Nieva, A. D. & Adornado, A. P. (2017). Simulated Biosorption of Cd(II) and Cu(II) in Single and Binary Metal Systems by Water Hyacinth (Eichhornia crassipes) using Aspen Adsorption. ASEAN Journal of Chemical Engineering, 16(2), pp. 21–43. DOI:10.22146/AJCHE.49892
  • 21. Tejada-Tovar, C., López-Cantillo, K., Vidales-Hernández, K., Villabona-Ortiz, A. & Acevedo-Correa, D. (2018). Kinetics and Bioadsortion Equilibrium of Lead and Cadmium in Batch Systems with Cocoa Shell (Theobroma Cacao L.). Contemporary Engineering Sciences, 11(23), pp. 1111–1120. DOI:10.12988/ces.2018.83100
  • 22. Tejada-Tovar, C., Villabona-Ortíz, A. & González-Delgado, Á. (2022). Adsorption Study of Continuous Heavy Metal Ions (Pb2+, Cd2+, Ni2+) Removal Using Cocoa (Theobroma cacao L.) Pod Husks. Materials, 15(19), 6937. DOI:10.3390/MA15196937
  • 23. Upadhyay, U., Gupta, S., Agarwal, A., Sreedhar, I. & Anitha, K. L. (2021). Process Optimization at an Industrial Scale in the adsorptive removal of Cd2+ ions using Dolochar via Response Surface Methodology. Researchsquare, 1–28. DOI:10.21203/RS.3.RS-811892/V1
  • 24. Vaiškūnaitė, R. (2024). Research of batch and fixed-bed column adsorption for phosphorus removal from wastewater using sewage sludge biochar. Archives of Environmental Protection, 50, pp. 72–81. DOI:10.24425/AEP.2024.152897
  • 25. Villabona-Ortíz, A., Tejada-Tovar, C., Ortega-Toro, R., Peña-Romero, K. & Botello-Urbiñez, C. (2022). Impact of temperature, bed height, and particle size on Ni(II) removal in a continuous system: Modelling the break curve. Journal of Water and Land Development, 52, pp. 257–264. DOI:10.24425/JWLD.2022.140397
  • 26. Yogeshwaran, V. & Priya, A. K. (2021). Desalination and Water Treatment Experimental studies on the removal of heavy metal ion concentration using sugarcane bagasse in batch adsorption process Experimental studies on the removal of heavy metal ion concentration using sugarcane bagasse in batch. Desalination Water Treat, 224, pp. 256–272. DOI:10.5004/dwt.2021.27160
  • 27. Zhang, Y. P., Adi, V. S. K., Huang, H. L., Lin, H. P. & Huang, Z. H. (2019). Adsorption of metal ions with biochars derived from biomass wastes in a fixed column: Adsorption isotherm and process simulation. Journal of Industrial and Engineering Chemistry, 76, pp. 240–244. DOI:10.1016/j.jiec.2019.03.046
  • 28. Znad, H., Awual, M. R. & Martini, S. (2022). The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Molecules, 27(4), 1275. DOI:10.3390/MOLECULES27041275
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a15b138d-c722-4f02-a86a-a349e115d59f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.