PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Soil properties and crop yields as influenced by the frequency of straw incorporation in a rape-wheat-triticale rotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Straw, particularly cereal straw, is a valuable by-product of crop production, which can be used for various purposes, e.g. as livestock feed and bedding or for making fuels, however it should primarily be retained on farmland in order to prevent soil organic matter (SOM) losses and thus to maintain or improve soil quality. The aim of this study was to analyze effects of the frequency of crop residues (straw) incorporation into the soil on the content of soil organic matter and on crop yields. There were the following experimental treatments: SR - straw of all crop in the rotation removed, S1 - straw of one crop per rotation incorporated, S2 - straw of two crops in the rotation incorporated, and S3 - straw of three crops incorporated into the soil (loamy sand). After 21 years of crop rotation with straw removal (SR) the SOM level in the soil slightly decreased to 14.4 g∙kg-1 soil DM, compared to that in 1997 (14.6 g∙kg-1). However, when straw of one crop (rape) per rotation was incorporated (S1) the content of SOM increased to 15.0 g∙kg-1 soil DM, and to 15.6 and 16.0 g∙kg-1 in S2 and S3 treatments, respectively. Straw retention had also a beneficial effect on the content of labile fractions of SOM (hot water extractable C and N). Grain yields and yield components of wheat and triticale, and seed yields of rape in the SR treatment were not significantly different from those obtained in S1, S2 and S3 treatments.
Wydawca
Rocznik
Tom
Strony
1--6
Opis fizyczny
Bibliogr. 29 poz., tab., wykr.
Twórcy
  • Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
  • Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
Bibliografia
  • BLANCHET G., GAVAZOV K., BRAGAZZA L., SINAJ S. 2016. Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system. Agriculture Ecosystems & Environment. Vol. 230 p. 116–126. DOI 10.1016/j.agee.2016.05.032.
  • BONGIORNO G., BUNEMANN E.K., OGUEJIOFOR CH.U., MEIER J., GORT G., COMANS R., MADER P., BRUSSAARD L., DE GOEDE R. 2019. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators. Vol. 99 p. 38–50. DOI 10.1016/j.ecolind.2018.12.008.
  • DECKERS J.A., NACHTERGAELE F.O., SPAARGAREN O.C. (eds.) 1998. World reference base for soils resources [online]. World Soil Resource Report No. 84. Rome, Italy. ISSS, ISRIC FAO. [Access 10.02.2022]. Available at: https://www.fao.org/3/w8594e/w8594e00.htm
  • DIACONO M., MONTEMURRO F. 2010. Long-term effects of organic amendments on soil fertility. A review. Agronomy for Sustainable Development. Vol. 30 p. 401–422. DOI 10.1051/agro/2009040.
  • DORAN J.W., PARKINS T.B. 1994. Defining and assessing soil quality. In: Defining soil quality for a sustainable environment. Eds. J.W. Doran, D.C. Coleman, D.F. Bezdicek, B.A. Stewart. Madison. Soil Science Society of America p. 3–21.
  • European Commision (DG ENV) 2010. Environmental impacts of different crop rotations in the European Union. Contract No. 07.0307/2009/SI2.541589/ETU/B1. Final Report [online]. [Access 10.02.2022]. Available at: https://ec.europa.eu/environment/agriculture/pdf/BIO_crop_rotations%20final%20report_rev%20executive%20summary_.pdf
  • GHANI A., DEXTER M., PERROTT K.W. 2003. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil Biology & Biochemistry. Vol. 35(9) p. 1231–1243. DOI 10.1016/S0038-0717(03)00186-X.
  • GRAHAM J.P., ELLIS F.B., CHRISTIAN F.B., CANNELL R.Q. 1986. Effects of straw residues on the establishment growth and yield of autumn sown cereals. Journal of Agricultural Engineering Research. Vol. 33 p. 39–50. DOI 10.1016/S0021-8634(86)80028-2.
  • HAN X., XU C., DUGAIT J.A.J., BOL R., WANG W., WU W., MENG F. 2018. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: A system analysis. Biogeosciences. Vol. 15 p. 1933–1946. DOI 10.5194/bg-15-1933-2018.
  • HAZARIKA S., PARKINSON R., BOL R., DIXON L., RUSSELL P., DONOVAN S., ALLEN D. 2009. Effect of tillage system and straw management on organic matter dynamics. Agronomy for Sustainable Development. Vol. 29 p. 525–533. DOI 10.1051/agro/2009024.
  • ISO 10390:2010. Soil quality – Determination of pH.
  • KUŚ J. 2015. Glebowa materia organiczna – znaczenie, zawartość i bilansowanie [Soil organic matter – The importance, content and balancing]. Studia i Raporty IUNG-PIB. Nr 45(19) p. 27–53.
  • LAIRD D.A., CHANG CH.-W. 2013. Long-term impacts of residue harvesting on soil quality. Soil & Tillage Research. Vol. 134 p. 33–40. DOI 10.1016/j.still.2013.07.001.
  • LEFF B., RAMANKUTTY N., FOLEY J.A. 2004. Geographic distribution of major crops across the world. Global Biogeochemmical Cycles. Vol. 18 p. 1–27. DOI 10.1029/2003GB002108.
  • LEMKE R.L., VANDENB YGAART A.J., CAMPBELL C.A., LAFOND G.P., GRANT B. 2010. Crop residue removal and fertilizer N: Effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll. Agriculture, Ecosystems & Environment. Vol. 135 p. 42–51. DOI 10.1016/j.agee.2009.08.010.
  • MARTYNIUK S., PIKUŁA D., KOZIEŁ M. 2019. Soil properties and productivity in two long-term crop rotations differing with respect to organic matter management on an Albic Luvisol. Scientific Reports. Vol. 9 p. 1–9. DOI 10.1038/s41598-018-37087-4.
  • NYBORG M., SOLBERG E.D., IZAURRALDEA R.C., MALHI S.S., MOLINA-AYALA M. 1995. Influence of long-term tillage, straw and N fertilizer on barley yield, plant-N uptake and soil-N balance. Soil & Tillage Research. Vol. 36 p. 165–174. DOI 10.1016/0167-1987(95)00502-1.
  • OSTROWSKA A., GAWLIŃSKI S., SZCZUBIAŁKA Z. 1991. Metody analizy i oceny właściwości gleb i roślin [Methods for analyzing and assessing the properties of soil and plants]. Warszawa. IOŚ pp. 334.
  • PN-EN ISO 11732:2007. Jakość wody – Oznaczanie azotu amonowego – Metoda analizy przepływowej (CFA i FIA) z detekcją spektrometryczną [Water quality – Determination of ammonium nitrogen by flow analysis (CFA and FIA) and spectrometric detection].
  • PN-ISO 14235. 2003. Soil quality – determination of organic carbon by sulfochromic oxidation.
  • RAFFA D.W., BOGDANSKI A., TITTONELL P. 2015. How does crop residue removal affect soil organic carbon and yield? A hierarchical analysis of management and environmental factors. Biomass & Bioenergy. Vol. 81 p. 345–355. DOI 10.1016/j.biombioe.2015.07.022.
  • REEVES D.W. 1997. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil & Tillage Research. Vol. 43 p. 131–167.
  • SIUTA A. 1999. Wpływ nawożenia słomą i biomasą międzyplonu ścierniskowego na plonowanie zbóż i wybrane wskaźniki żyzności gleby [Effect of fertilization with straw and stubble inter-crop biomass on yields of cereals and selected soil fertility indices]. Zeszyty Problemowe Postępów Nauk Rolniczych. Z. 467 p. 245–251.
  • SMAGACZ J. 2003. Możliwości energetycznego wykorzystania biomasy w Polsce [The possibilities for energetic utilization of biomass in Poland]. Pamiętnik Puławski. Z. 132 p. 395–402.
  • VAN GROENIGEN K.J., HASTINGS A., FORRISTAL D., ROTH B., JONS M., SMITH P. 2011. Soil C storage as affected by tillage and straw management: An assessment using field measurements and model predictions. Agriculture, Ecosystems & Environment. Vol. 140 p. 218–225. DOI 10.1016/j.agee.2010.12.008.
  • WANG W.J., DALAL R.C. 2006. Carbon inventory for cereal cropping system under contrasting tillage, nitrogen fertilization and stubble management practices. Soil & Tillage Research. Vol. 91 p. 68–74. DOI 10.1016/j.still.2005.11.005
  • WANG Q., LIU X., LI J., YANG X., GUO Z. 2021. Straw application and soil organic carbon change: A meta-analysis. Soil & Water Research. Vol. 16 p. 112−120. DOI 10.17221/155/2020-SWR.
  • XU R.K., COVENTRY D.R., FAARHOODI A., SCHULTZ J.E. 2002. Soil acidification as influenced by crop rotation, stubble management, and application of nitrogenous fertilizer, Tarlee, South Australia. Australian Journal of Soil Research. Vol. 40 p. 483–496. DOI 10.1071/SR00104.
  • YAN F., SCHUBERT S. 2000. Soil pH changes after application of plant shoot materials of faba bean and wheat. Plant & Soil. Vol. 220 p. 279–287. DOI 10.1023/A:1004712518406.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1538c96-0d2f-4326-8d9d-a00b4e9b6a80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.