PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electric shock hazard in circuits with variable-speed drives

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The conventional approach to electrical safety under fault condition in typical power systems considers earth fault currents of sinusoidal waveform and frequency of 50‒60 Hz. However, in circuits with variable-speed drives, there is earth fault current flow with harmonics, and these harmonics influence the threshold of ventricular fibrillation. The paper presents earth fault current waveforms in circuits with variable-speed drives without inverter output (motor) filter and with one of the two types of inverter output filters being used. The details of both filters are presented, and the effect of harmonics of earth fault current on ventricular fibrillation is evaluated. Furthermore, the effect of harmonics, which occurs in circuit of variable-speed drive, on the tripping current of residual current devices is presented. Residual current devices may be utilized to ensure protection against direct and indirect contact, but limitations in their proper operation, due to harmonics, may exist. Operational characteristics of a proposed residual current device dedicated to circuits with earth fault current containing harmonics, as in the variable-speed circuits, are presented.
Rocznik
Strony
361--372
Opis fizyczny
Bibliogr. 29 poz., rys., wykr., tab.
Twórcy
autor
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 11/12 Narutowicza St., 80-233 Gdańsk, Poland
autor
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 11/12 Narutowicza St., 80-233 Gdańsk, Poland
Bibliografia
  • [1] Protection against electric shock. Common aspects for installation and equipment, EN 61140, (2002).
  • [2] Low-voltage electrical installations – Part 4‒41: Protection for safety – Protection against electric shock, HD 60364‒4–41, (2007).
  • [3] S. Czapp and D. Swisulski, “Computer system for evaluation of shock hazard in circuits with non-sinusoidal earth currents”, Int. School on Nonsinusoidal Currents and Compensation (ISNCC), (2015), DOI: 10.1109/ISNCC.2015.7174684.
  • [4] S. Czapp, “Comparison of residual current devices tripping characteristics for selected residual current waveforms”, Elektronika i Elektrotechnika 100 (4), 7–10 (2010).
  • [5] S. Czapp, “The impact of higher-order harmonics on tripping of residual current devices”, Proc. Int. Power Electronics and Motion Control Conference EPE-PEMC 2008, Poznan, (2008), DOI: 10.1109/EPEPEMC.2008.4635569.
  • [6] M. Mitolo, “Shock hazard in the presence of protective residual-current devices”, IEEE Trans. on Industry Applications 46 (4), 1552–1557 (2010), DOI: 10.1109/TIA.2010.2051068.
  • [7] S.T. Donahue, C.L. Storm, Jr. D.A. Wetz, and W.-J. Lee, “Study of the effects of smart meter RF transmissions on GFCI outlets”, IEEE Trans. on Electromagnetic Compatibility 56 (6), 1361–1369 (2014), DOI: 10.1109/TEMC.2014.2354016.
  • [8] C. Roldan-Porta, G. Escriva-Escriva, F.J. Cárcel-Carrasco, and C. Roldán-Blay, “Nuisance tripping of residual current circuit breakers: A practical case”, Electric Power Sys. Research 106, 180–187 (2014), DOI: 10.1016/j.epsr.2013.07.020.
  • [9] A. Mohd Zaki and A. Rusnani, “Power quality analysis of Residual Current Device [RCD] nuisance tripping at commercial buildings”, 2013 IEEE Symposium on Industrial Electronics and Applications (ISIEA), 122–125 (2013), DOI: 10.1109/ISIEA.2013.6738980.
  • [10] X. Luo, Y. Du, X.H. Wang, and M. L. Chen, “Tripping characteristics of residual current devices under nonsinusoidal currents”, IEEE Trans. on Industry Applications 47 (3), 1515–1521 (2011), DOI: 10.1109/TIA.2011.2125939.
  • [11] F. Freschi, “High-frequency behavior of residual current devices”, IEEE Trans. on Power Delivery 27 (3), 1629‒1635 (2012), DOI: 10.1109/TPWRD.2012.2191423.
  • [12] V. Cocina, P. Colella, E. Pons, R. Tommasini, and F. Palamara, “Indirect contacts protection for multi-frequency currents ground faults”, 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), 1–5 (2016), DOI: 10.1109/EEEIC.2016.7555701.
  • [13] H. Abu-Rub, A. Iqbal, and J. Guzinski, High Performance Control of AC Drives with Matlab/Simulink Models, Wiley, 2012.
  • [14] H. Abu-Rub, S. Bayhan, S. Moinoddin, M. Malinowski, and J. Guzinski, “Medium-voltage drives: Challenges and existing technology”, IEEE Power Electronics Magazine 3 (2), 29–41 (2016), DOI: 10.1109/MPEL.2016.2551802.
  • [15] H. Akagi, “Prospects and expectations of power electronics in the 21st century”, Power Conversion Conference, PCC’2002, Osaka, Japan (2002), DOI: 10.1109/PCC.2002.998092.
  • [16] H. Akagi, H. Hasegawa, and T. Doumoto, “Design and performance of a passive EMI filter for use with a voltage-source PWM inverter having sinusoidal output voltage and zero common-mode voltage”, IEEE Trans. on Power Electronics 19 (4), 1069–1076 (2004), DOI: 10.1109/TPEL.2004.830039.
  • [17] B.K. Bose, “Power electronics and motor drives recent progress and perspective”, IEEE Trans. on Industrial Electronics 56 (2), 581–588 (2009), DOI: 10.1109/TIE.2008.2002726.
  • [18] S. Czapp and J. Guzinski, “The effect of the motor filters on earth fault current waveform in circuits with variable speed drives”, International School on Nonsinusoidal Currents and Compensation (ISNCC), 1–6 (2013), DOI: 10.1109/ISNCC.2013.6604442.
  • [19] P. Wiatr and M.P. Kazmierkowski, “Model predictive control of multilevel cascaded converter with boosting capability – a simulation study”, Bull. Pol. Ac.: Tech. 64 (3), 581–590 (2016), DOI: 10.1515/bpasts-2016‒0065.
  • [20] T. Orlowska-Kowalska and M. Dybkowski, “Performance analysis of the sensorless adaptive sliding-mode neuro-fuzzy control of the induction motor drive with MRAS-type speed estimator”, Bull. Pol. Ac.: Tech. 60 (1), 61–70 (2012), DOI: 10.2478/v10175‒012‒0010‒0.
  • [21] A. Muetze and E. G. Strangas, “The useful life of inverter-based drive bearings: methods and research directions from localized maintenance to prognosis”, IEEE Industry Applications Magazine 22 (4), 63–73 (2016), DOI: 10.1109/MIAS.2015.2459117.
  • [22] V. Niskanen, A. Muetze, and J. Ahola, “Study on bearing impedance properties at several hundred kilohertz for different electric machine operating parameters”, IEEE Trans. on Industry Applications 50 (5), 3438–3447 (2014), DOI: 10.1109/TIA.2014.2308392.
  • [23] J. Guzinski, H. Abu-Rub, and P. Strankowski, Variable Speed AC Drives with Inverter Output Filters, Wiley, 2015.
  • [24] P. Pairodamonchai and S. Sangwongwanich, “Exact common-mode and differential-mode equivalent circuits of inverters in motor drive systems taking into account input rectifiers”, IEEE PEDS Conference, Singapore, (2011), DOI: 10.1109/PEDS.2011.6147259.
  • [25] Effects of current on human beings and livestock. Part 1: General aspects, IEC/TS 60479‒1, (2005).
  • [26] Effects of current on human beings and livestock. Part 2: Special aspects, IEC/TS 60479‒2, (2007).
  • [27] General requirements for residual current operated protective devices, IEC 60755, (2008).
  • [28] S. Czapp, “Differentiating current switch”, Polish patent PL000000211991B1, (2012), https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=PL000000211991B1
  • [29] Type F and type B residual current operated circuit-breakers with and without integral overcurrent protection for household and similar uses, EN 62423, (2012).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1501a09-b0ac-4256-9b22-e338215a97b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.